Nowadays cancer represents a prominent challenge in clinics. Main achievements in cancer management would be the development of highly accurate and specific diagnostic tools for early detection of cancer onset, and the generation of smart drug delivery systems for targeted chemotherapy release in cancer cells. In this context, protein-based nanocages hold a tremendous potential as devices for theranostics purposes. In particular, ferritin has emerged as an excellent and promising protein-based nanocage thanks to its unique architecture, surface properties and high biocompatibility. By exploiting natural recognition of the Transferrin Receptor 1, which is overexpressed on tumor cells, ferritin nanocages may ensure a proper drug delivery and release. Moreover, researchers have applied surface functionalities on ferritin cages for further providing active tumor targeting. Encapsulation strategies of non metal-containing drugs within ferritin cages have been explored and successfully performed with encouraging results. Various preclinical studies have demonstrated that nanoformulation within ferritin nanocages significantly improved targeted therapy and accurate imaging of cancer cells. Aims of this review are to describe structure and functions of ferritin nanocages, and to provide an overview about the nanotechnological approaches implemented for applying them to cancer diagnosis and treatment.
Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.