Autophagy, a pathway for bulk protein degradation and removal of damaged organelles, represents one of the major responses of cells to stress, thereby exerting a strict control on their correct functioning. Consequently, this process has been involved in the pathogenesis and therapeutic responses of several human diseases. Mitogen-activated protein (MAP) kinase 15 (MAPK15) is an atypical member of the MAP kinase family that recently emerged as a key modulator of autophagy and, through this, of cell transformation. Still, no information is available about signaling pathways mediating the effect of MAPK15 on this process, nor is it known which phase of autophagosome biogenesis is affected by this MAP kinase. Here, we demonstrate that MAPK15 stimulated 5'-AMP-activated protein kinase-dependent activity of UNC-51-like kinase 1 (ULK1), the only protein kinase among the ATG-related proteins, toward downstream substrates and signaling intermediates. Importantly, MAPK15 directly interacted with the ULK1 complex and mediated ULK1 activation induced by starvation, a classical stimulus for the autophagic process. In turn, ULK1 and its highly homologous protein ULK2 are able to transduce MAPK15 signals stimulating early phases of autophagosomal biogenesis in a multikinase cascade that offers numerous potential targets for future therapeutic intervention in cancer and other autophagy-related human diseases.
Macroautophagy/autophagy is one of the major responses to stress in eukaryotic cells and is implicated in several pathological conditions such as infections, neurodegenerative diseases and cancer. Interestingly, cancer cells take full advantage of autophagy both to support tumor growth in adverse microenvironments and to oppose damages induced by anti-neoplastic therapies. Importantly, different human oncogenes are able to modulate this survival mechanism to support the transformation process, ultimately leading to ‘autophagy addiction’. Still, oncogenic signaling events, impinging on the control of autophagy, are poorly characterized, limiting our possibilities to take advantage of these mechanisms for therapeutic purposes. Here, we screened a library of activated kinases for their ability to stimulate autophagy. By this approach, we identified novel potential regulators of the autophagic process and, among them, the IKBKE oncogene. Specifically, we demonstrate that this oncoprotein is able to stimulate autophagy when overexpressed, an event frequently found in breast tumors, and that its activity is strictly required for breast cancer cells to support the autophagic process. Interestingly, different oncogenic pathways typically involved in breast cancer, namely ERBB2 and PI3K-AKT-MTOR, also rely on IKBKE to control this process. Ultimately, we show that IKBKE-dependent autophagy is necessary for breast cancer cell proliferation, suggesting an important supporting role for this oncogene and autophagy in these tumors.Abbreviations: AAK1: AP2 associated kinase 1; AMPK: 5ʹ-prime-AMP-activated protein kinase; AKT1: AKT serine/threonine kinase 1; BAF: bafilomycin A1; CA: constitutively activated; CDK17: cyclin dependent kinase 17; CDK18: cyclin dependent kinase 18; CHUK: conserved helix-loop-helix ubiquitous kinase; EGF: epidermal growth factor; ERBB2: erb-b2 receptor tyrosine kinase 2; FGF: fibroblast growth factor; FM: full medium; GALK2: galactokinase 2; IKBKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKE: inhibitor of nuclear factor kappa B kinase subunit epsilon; IKK: IκB kinase complex; KD: kinase dead; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK1: mitogen-activated protein kinase 1; MAPK15: mitogen-activated protein kinase 15; MTORC1: mammalian target of rapamycin kinase complex 1; myr: myristoylation/myristoylated; NFKBIA: NFKB inhibitor alpha; PDGF: platelet derived growth factor; PFKL: phosphofructokinase, liver type; PRKAA1: protein kinase AMP-activated catalytic subunit alpha 1; PRKCD: protein kinase C delta; SQSTM1: sequestosome 1; TBK1: TANK binding kinase 1; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; WB: western blot; WT: wild-type.
The mechanism of endoplasmic reticulum (ER)-Golgi complex (GC) traffic is conserved from yeast to higher animals, but the architectures and the dynamics of vesicles' traffic between ER and GC vary across cell types and species. Skeletal muscle is a unique tissue in which ER and GC undergo a structural reorganization during differentiation that completely remodels the secretory pathway. In mature skeletal muscle, the ER is turned into sarcoplasmic reticulum, which is composed of junctional and longitudinal regions specialized, respectively, in calcium release and uptake during contraction. During skeletal muscle differentiation, GC acquires a particular fragmented organization as it appears as spots both at the nuclear poles and along the fibers. The ubiquitary-expressed Yip1A isoform has been proposed to be involved in anterograde trafficking from the ER exit sites to the cis-side of the GC and in ER and GC architecture organization. We investigated the role of Yip1 in skeletal muscle. Here we report that, following skeletal muscle development, the expression of the Yip1A decreases and is replaced by the muscle-specific Yip1B isoform. Confocal microscope analysis revealed that in adult skeletal muscle the Yip1B isoform is localized in the ER-Golgi intermediate and cis-Golgi compartments. Finally, skeletal muscle knockdown experiments in vitro and in vivo suggested that Yip1B is not involved in GC structure maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.