We investigated the correlations of deletions of mitochondrial DNA in skeletal muscle with clinical manifestations of mitochondrial myopathies, a group of disorders defined either by biochemical abnormalities of mitochondria or by morphologic changes causing a ragged red appearance of the muscle fibers histochemically. We performed genomic Southern blot analysis of muscle mitochondrial DNA from 123 patients with different mitochondrial myopathies or encephalomyopathies. Deletions were found in the mitochondrial DNA of 32 patients, all of whom had progressive external ophthalmoplegia. Some patients had only ocular myopathy, whereas others had Kearns-Sayre syndrome, a multisystem disorder characterized by ophthalmoplegia, pigmentary retinopathy, heart block, and cerebellar ataxia. The deletions ranged in size from 1.3 to 7.6 kilobases and were mapped to different sites in the mitochondrial DNA, but an identical 4.9-kilobase deletion was found in the same location in 11 patients. Biochemical analysis showed decreased activities of NADH dehydrogenase, rotenone-sensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase, four enzymes of the mitochondrial respiratory chain containing subunits encoded by mitochondrial DNA. We conclude that deletions of muscle mitochondrial DNA are associated with ophthalmoplegia and may result in impaired mitochondrial function. However, the precise relation between clinical and biochemical phenotypes and deletions remains to be defined.
Acute necrotizing encephalopathy (ANE) is a rapidly progressive encephalopathy that can occur in otherwise healthy children after common viral infections such as influenza and parainfluenza. Most ANE is sporadic and nonrecurrent (isolated ANE). However, we identified a 7 Mb interval containing a susceptibility locus (ANE1) in a family segregating recurrent ANE as an incompletely penetrant, autosomal-dominant trait. We now report that all affected individuals and obligate carriers in this family are heterozygous for a missense mutation (c.1880C-->T, p.Thr585Met) in the gene encoding the nuclear pore protein Ran Binding Protein 2 (RANBP2). To determine whether this mutation is the susceptibility allele, we screened controls and other patients with ANE who are unrelated to the index family. Patients from 9 of 15 additional kindreds with familial or recurrent ANE had the identical mutation. It arose de novo in two families and independently in several other families. Two other patients with familial ANE had different RANBP2 missense mutations that altered conserved residues. None of the three RANBP2 missense mutations were found in 19 patients with isolated ANE or in unaffected controls. We conclude that missense mutations in RANBP2 are susceptibility alleles for familial and recurrent cases of ANE.
A preclinical screening for prompt-to-use drugs that are safer than steroids and beneficial in Duchenne muscular dystrophy was performed. Compounds able to reduce calcium-induced degeneration (taurine or creatine 10% in chow) or to stimulate regeneration [insulin-like growth factor-1 (IGF-1); 50 or 500 g/kg s.c.] were administered for 4 to 8 weeks to mdx mice undergoing chronic exercise on a treadmill, a protocol to worsen dystrophy progression. ␣-Methyl-prednisolone (PDN; 1 mg/kg) was used as positive control. The effects were evaluated in vivo on forelimb strength and in vitro electrophysiologically on the macroscopic chloride conductance (gCl), an index of degeneration-regeneration events in mdx muscles, and on the mechanical threshold, a calcium-sensitive index of excitation-contraction coupling. The exercise produced a significant weakness and an impairment of gCl, by further decreasing the already low value of degenerating diaphragm (DIA) and fully hampering the increase of gCl typical of regenerating extensor digitorum longus (EDL) mdx muscle. The already negative voltage threshold for contraction of mdx EDL was also slightly worsened. Taurine Ͼ creatine Ͼ IGF-1 counteracted the exercise-induced weakness. The amelioration of gCl was drug-and muscle-specific: taurine was effective in EDL, but not in DIA muscle; IGF-1 and PDN were fully restorative in both muscles, whereas creatine was ineffective. An acute effect of IGF-1 on gCl was observed in vitro in untreated, but not in IGF-1-treated exercised mdx muscles. Taurine Ͼ PDN Ͼ IGF-1, but not creatine, significantly ameliorated the negative threshold voltage values of the EDL fibers. The results predict a potential benefit of taurine and IGF-1 for treating human dystrophy.
Hypokalemic periodic paralysis, hyperkalemic periodic paralysis, and paramyotonia congenita may be distinguished based on clinical data. This series of 226 patients (127 kindreds) confirms some clinical features of this disorder with notable exceptions: In this series, patients without mutations had a less typical clinical presentation including an older age at onset, no changes in diet as a precipitant, and absence of vacuolar myopathy on muscle biopsy.
Deletions of muscle mitochondrial DNA (mtDNA) have recently been found in patients with mitochondrial myopathy. However, as most of the described cases were sporadic, and individual deletions involved different portions of mtDNA, the mechanism(s) producing the molecular lesions, as well as their mode of transmission, remain unclear. By studying families with mtDNA heteroplasmy, valuable information can be obtained about the role of inheritable factors in the pathogenesis of these disorders. We have studied four members of a family with autosomal dominant mitochondrial myopathy. Multiple deletions, involving the same portion of muscle mtDNA, were identified in all patients. Sequence analysis of the mutant mtDNAs, performed after DNA amplification by the polymerase-chain reaction showed that all the deletions start within a 12-nucleotide stretch at the 5' end of the D-loop region, a site of active communication between the nucleus and the mtDNA. The data indicate that a mutation of a nuclear-coded protein can destroy the integrity of the mitochondrial genome in a specific, heritable way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.