Small‐scale physical models are commonly used to investigate gas‐stirred processes in steelmaking practice. The argon oxygen decarburization (AOD) converter is among various processes widely used in the metallurgy field and utilizes side blowing of oxygen and inert gas for mixing in the bath. Herein, the effect of the converter inclination on mixing time and jet‐penetration length with a side‐blown physical model is investigated. Scaling with the modified Froude number is applied on data from a real industrial AOD converter to achieve a system with reasonable gas flow rates. During the experiments, water is used to simulate liquid steel and air is blown through side‐mounted nozzles for stirring. A NaCl tracer is added and subsequent conductivity measurements are used to measure mixing time. Overall, the penetration length is shown to be independent of inclination angle. The mixing time is found to be influenced by the change of bath height to diameter ratio, change of geometry in the bath volume, gas flow rate, and the intensified wave motion at the interface caused by the inclination of the vessel. The mixing time increase with 14% when 14° angle is applied.
Metallurgical converters such as the argon–oxygen decarburization (AOD) converter generally utilize gas blowing for the mixing and refinement of liquid steel. Due to the harsh environment of the complex and opaque system, it is common practice to study the stirring of the process through physical and numerical models. Effective mixing in the bath has an important role in refinement such as decarburization and has been vividly studied before. However, high‐temperature chemical reactions that also play a major role are sparsely investigated. With the help of modeling, a computational fluid dynamics model coupled with chemical reactions is developed, allowing the study of both dynamic fluid transport and chemical reactions. Herein, the chemical reactions for a single gas bubble in the AOD are investigated. The study shows that a 60 mm oxygen gas bubble rapidly reacts with the melt and is saturated with carbon in 0.2–0.25 s at low‐pressure levels. The saturation time is affected by the pressure and the composition of the injected gas bubble. The impact of ferrostatic pressure on the reactions is more significant at larger depth differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.