Whereas target-specific drugs are available for treating ERBB2-overexpressing and hormone receptor-positive breast cancers, no tailored therapy exists for hormone receptor-and ERBB2-negative (''triple-negative'') mammary carcinomas. Triple-negative tumors account for 15% of all breast cancers and frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. The DNA-repair defects characteristic of BRCA1-deficient cells confer sensitivity to poly-(ADP-ribose) polymerase 1 (PARP1) inhibition, which could be relevant to treatment of triple-negative tumors. To evaluate PARP1 inhibition in a realistic in vivo setting, we tested the PARP inhibitor AZD2281 in a genetically engineered mouse model (GEMM) for BRCA1-associated breast cancer. Treatment of tumor-bearing mice with AZD2281 inhibited tumor growth without signs of toxicity, resulting in strongly increased survival. Long-term treatment with AZD2281 in this model did result in the development of drug resistance, caused by up-regulation of Abcb1a/b genes encoding P-glycoprotein efflux pumps. This resistance to AZD2281 could be reversed by coadministration of the P-glycoprotein inhibitor tariquidar. Combination of AZD2281 with cisplatin or carboplatin increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents. Our results demonstrate in vivo efficacy of AZD2281 against BRCA1-deficient breast cancer and illustrate how GEMMs of cancer can be used for preclinical evaluation of novel therapeutics and for testing ways to overcome or circumvent therapy resistance.breast cancer ͉ drug resistance ͉ P-glycoprotein ͉ GEMM ͉ DNA repair P oly(ADP-ribose) polymerase 1 (PARP1) is involved in surveillance and maintenance of genome integrity and functions as a key molecule in the repair of DNA single-strand breaks (SSBs) (1-3). Inactivation of SSB repair by PARP1 inhibition during S-phase induces DNA double-strand breaks (DSBs) and may thus confer synthetic lethality to cells with defective homology-directed DSB repair (4, 5). Mutations in BRCA1 or BRCA2 predispose to hereditary breast and ovarian cancer, which accounts for 3-5% of all breast cancers and a greater proportion of ovarian cancers (6). BRCA1 and BRCA2 function is critical for homologous recombination (HR) (6, 7), and BRCA-deficient cells appear to be highly sensitive to PARP inhibition, resulting in increased genomic instability, cell cycle arrest, and apoptosis (4, 5). PARP1 inhibition might, therefore, be a specific therapy for cancers with defects in BRCA1/2 or other HR pathway components (clinically relevant PARP inhibitors are reviewed in ref. 8). Recently, Donawho et al. (9) have reported that the PARP inhibitor ABT-888 in combination with platinum drugs or cyclophosphamide, but not alone, causes regression of BRCA1-deficient MX-1 xenografts. However, this study uses only a single BRCA1-mutated tumor line without isogenic controls to address the impact of BRCA1 mutation on response...
Inhibition of PARP is a promising therapeutic strategy for homologous recombinationdefi cient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-defi cient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the P-glycoprotein drug effl ux transporter. Here, we show that tumorspecifi c genetic inactivation of P-glycoprotein increases the long-term response of BRCA1-defi cient mouse mammary tumors to olaparib, but these tumors eventually developed PARPi resistance. In a fraction of cases, this resistance is caused by partial restoration of homologous recombination due to somatic loss of 53BP1. Importantly, PARPi resistance was minimized by long-term treatment with the novel PARP inhibitor AZD2461, which is a poor P-glycoprotein substrate. Together, our data suggest that restoration of homologous recombination is an important mechanism for PARPi resistance in BRCA1-defi cient mammary tumors and that the risk of relapse of BRCA1-defi cient tumors can be effectively minimized by using optimized PARP inhibitors. SIGNIFICANCE:In this study, we show that loss of 53BP1 causes resistance to PARP inhibition in mouse mammary tumors that are defi cient in BRCA1. We hypothesize that low expression or absence of 53BP1 also reduces the response of patients with BRCA1-defi cient tumors to PARP inhibitors.Cancer Discov; 3(1);[68][69][70][71][72][73][74][75][76][77][78][79][80][81]
Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states.
There is no tailored therapy yet for human basal-like mammary carcinomas. However, BRCA1 dysfunction is frequently present in these malignancies, compromising homology-directed DNA repair. This defect may serve as the tumor's Achilles heel and make the tumor hypersensitive to DNA breaks. We have evaluated this putative synthetic lethality in a genetically engineered mouse model for BRCA1-associated breast cancer, using the topoisomerase I (Top1) poison topotecan as monotherapy and in combination with poly(ADP-ribose) polymerase inhibition by olaparib. All 20 tumors tested were topotecan sensitive, but response heterogeneity was substantial. Although topotecan increased mouse survival, all tumors eventually acquired resistance. As mechanisms of in vivo resistance, we identified overexpression of Abcg2/Bcrp and markedly reduced protein levels of the drug target Top1 (without altered mRNA levels). Tumor-specific genetic ablation of Abcg2 significantly increased overall survival of topotecan-treated animals (P < 0.001), confirming the in vivo relevance of ABCG2 for topotecan resistance in a novel approach. Despite the lack of ABCG2, a putative tumor-initiating cell marker, none of the 11 Abcg2 −/− ;Brca1 −/− ;p53 −/− tumors were eradicated, not even by the combination topotecanolaparib. We find that olaparib substantially increases topotecan toxicity in this model, and we suggest that this might also happen in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.