Graphene substrates are known to have randomly located functional groups on their surface, particularly at their edges, including carboxylate, carbonyl, epoxy, and alcohol functionalities. However, the detailed interactions of these graphene functionalities with metal oxide nanoclusters are unexplored. This work examined the interaction of titania nanostructures with both graphene and functionalized graphene nanoribbons (GNRs) using density functional theory (DFT) calculations. The interactions of TiO 2 (anatase, rutile, and molecular) with graphene were found to favor the physisorption of rutile titania. The interactions of TiO 2 with GNRs were found to considerably improve the strength of the nanostructure binding to the substrate with rutile and anatase showing similar chemisorption. Charge density maps showed the importance of the electron distribution in the interaction between titania and graphene with chemisorption sites. Valuable information on the strength of the binding energies was determined by studying the electronic structure using partial density of states (PDOS) of the TiO 2 /graphene systems at specific adsorption sites. These results show the potential for controlled and oriented growth mechanisms that have applications in next generation photovoltaic and photocatalytic devices.
One-dimensional nanostructures at silicon surfaces have potential applications in nanoscale devices. Here we propose a mechanism of dipole-directed assembly for the growth of lines of physisorbed dipolar molecules. The adsorbate chosen was a halide, in preparation for the patterned imprinting of halogen atoms. Using scanning tunnelling microscopy, physisorbed 1,5-dichloropentane on Si(100)-2x1 was shown to self-assemble at room temperature into molecular lines that grew predominantly perpendicular to the Si-dimer rows. Line formation was triggered by the displacement of surface charge by the dipolar adsorbate. Experimental and simulated scanning tunnelling microscopy images were in agreement for a range of positive and negative bias voltages. The geometry of the physisorbed molecules and nature of their binding were evident from the scanning tunnelling microscopy images, as interpreted by scanning tunnelling microscopy simulation.
We have observed on-off switching of scanning tunneling microscope current flow to silicon adatoms of the Si(111)-(7 x 7) surface that are enclosed within a bistable dimeric corral of self-assembled chlorododecane molecules. These thermally activated oscillations amounted to an order of magnitude change in the current. Theory showed that small changes in molecular configuration could cause alterations in the corralled adatom's electronic energy by as much as 1 eV due to local field effects, accounting for the observed current switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.