OBJECTIVEWe have previously shown that overexpression of the Na-Ca exchanger (NCX1), a protein responsible for Ca2+ extrusion from cells, increases β-cell programmed cell death (apoptosis) and reduces β-cell proliferation. To further characterize the role of NCX1 in β-cells under in vivo conditions, we developed and characterized mice deficient for NCX1.RESEARCH DESIGN AND METHODSBiologic and morphologic methods (Ca2+ imaging, Ca2+ uptake, glucose metabolism, insulin release, and point counting morphometry) were used to assess β-cell function in vitro. Blood glucose and insulin levels were measured to assess glucose metabolism and insulin sensitivity in vivo. Islets were transplanted under the kidney capsule to assess their performance to revert diabetes in alloxan-diabetic mice.RESULTSHeterozygous inactivation of Ncx1 in mice induced an increase in glucose-induced insulin release, with a major enhancement of its first and second phase. This was paralleled by an increase in β-cell proliferation and mass. The mutation also increased β-cell insulin content, proinsulin immunostaining, glucose-induced Ca2+ uptake, and β-cell resistance to hypoxia. In addition, Ncx1+/− islets showed a two- to four-times higher rate of diabetes cure than Ncx1+/+ islets when transplanted into diabetic animals.CONCLUSIONSDownregulation of the Na/Ca exchanger leads to an increase in β-cell function, proliferation, mass, and resistance to physiologic stress, namely to various changes in β-cell function that are opposite to the major abnormalities seen in type 2 diabetes. This provides a unique model for the prevention and treatment of β-cell dysfunction in type 2 diabetes and after islet transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.