Abstract-Region of interest selection is an essential part for remote photoplethysmography (rPPG) algorithms. Most of the time, face detection provided by a supervised learning of physical appearance features coupled with skin detection is used for region of interest selection. However, both methods have several limitations and we propose to implicitly select living skin tissue via their particular pulsatility feature. The input video stream is decomposed into several temporal superpixels from which pulse signals are extracted. Pulsatility measure for each temporal superpixel is then used to merge pulse traces and estimate the photoplethysmogram signal. This allows to select skin tissue and furthermore to favor areas where the pulse trace is more predominant. Experimental results showed that our method perform better than state of the art algorithms without any critical face or skin detection.
Segmentation is a critical step for many computer vision applications. Among them, the remote photoplethysmography technique is significantly impacted by the quality of region of interest segmentation. With the heart-rate estimation accuracy, the processing time is obviously a key issue for real-time monitoring. Recent face detection algorithms can perform real-time processing, however for unsupervised algorithms, i.e. without any subject detection based on supervised learning, existing methods are not able to achieve real-time on regular platform. In this paper, we propose a new method to perform real-time unsupervised remote photoplethysmograhy based on efficient temporally propagated superpixels segmentation. The proposed method performs the segmentation step by implicitly identifying the superpixel boundaries. Hence, only a fraction of the image is used to perform the segmentation which reduces greatly the computational burden of the process. The segmentation quality remains comparable to state of the art methods while computational time is divided by a factor up to 8 times. The efficiency of the superpixel segmentation allow us to propose a real-time unsupervised rPPG algorithm considering frames of 640x480, RGB, at 25 frames per second on a single core platform. We obtained realtime processing for 93% of precision at 2.5 beat per minute using our inhouse video database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.