Intrinsic and acquired resistance are major drawbacks of platinum-based cancer therapy. The protein superfamily of cysteine- and ZnII-rich proteins, metallothioneins (MT), efficiently inactivate these antitumor drugs because of the strong reactivity of platinum compounds with S-donor molecules. In this study the reactions of human Zn7MT-2 with twelve cis/trans-[Pt(N-donor)2Cl2] compounds and [Pt(dien)Cl]Cl, including new generation drugs, were investigated and the products characterized. A comparison of reaction kinetics revealed that trans-PtII compounds react faster with Zn7MT-2 than cis-PtII compounds. The characterization of the products showed that while all ligands in cis-PtII compounds were replaced by cysteine thiolates, trans-PtII compounds retained their N-donor ligands, thus remaining in a potentially active form. These results provide an increased understanding of the role of MT in the acquired resistance to platinum-based anticancer drugs.
Basolateral efflux is a necessary step in transepithelial (re)absorption of amino acids from small intestine and kidney proximal tubule. The best characterized basolateral amino acid transporters are y+LAT1-4F2hc and LAT2-4F2hc that function as obligatory exchangers and thus, do not contribute to net amino acid (re)absorption. The aromatic amino acid transporter TAT1 was shown previously to localize basolaterally in rat's small intestine and to mediate the efflux of L-Trp in the absence of exchange substrate, upon expression in Xenopus oocytes. We compared here the amino acid influx and efflux via mouse TAT1 in Xenopus oocytes. The results show that mTAT1 functions as facilitated diffusion pathway for aromatic amino acids and that its properties are symmetrical in terms of selectivity and apparent affinity. We show by real-time RT-PCR that its mRNA is highly expressed in mouse small intestine mucosa, kidney, liver, and skeletal muscle as well as present in all other tested tissues. We show that mTAT1 is not N-glycosylated and that it localizes to the mouse kidney proximal tubule. This expression is characterized by an axial gradient similar to that of the luminal neutral amino acid transporter B0AT1 and shows the same basolateral localization as 4F2hc. mTAT1 also localizes to the basolateral membrane of small intestine enterocytes and to the sinusoidal side of perivenous hepatocytes. In summary, we show that TAT1 is a basolateral epithelial transporter and that it can function as a net efflux pathway for aromatic amino acids. We propose that it, thereby, may supply parallel exchangers with recycling uptake substrates that could drive the efflux of other amino acids.
The orphan transporter Slc6a18 (XT2) is highly expressed at the luminal membrane of kidney proximal tubules and displays ϳ50% identity with Slc6a19 (B 0 AT1), which is the main neutral amino acid transporter in both kidney and small intestine. As yet, the amino acid transport function of XT2 has only been experimentally supported by the urinary glycine loss observed in xt2 null mice. We report here that in Xenopus laevis oocytes, co-expressed ACE2 (angiotensin-converting enzyme 2) associates with XT2 and reveals its function as a Na ؉ -and Cl ؊ -dependent neutral amino acid transporter. In contrast to its association with ACE2 observed in Xenopus laevis oocytes, our experiments with ace2 and collectrin null mice demonstrate that in vivo it is Collectrin, a smaller homologue of ACE2, that is required for functional expression of XT2 in kidney. To assess the function of XT2 in vivo, we reanalyzed its knock-out mouse model after more than 10 generations of backcrossing into C57BL/6 background. In addition to the previously published glycinuria, we observed a urinary loss of several other amino acids, in particular -branched and small neutral ones. Using telemetry, we confirmed the previously described link of XT2 absence with hypertension but only in physically restrained animals. Taken together, our data indicate that the formerly orphan transporter XT2 functions as a sodium and chloride-dependent neutral amino acid transporter that we propose to rename B 0 AT3.
The mechanisms underlying the biogenesis of the structurally unique, binuclear Cu1.5+•Cu1.5+ redox center (CuA) on subunit II (CoxB) of cytochrome oxidases have been a long-standing mystery. Here, we reconstituted the CoxB•CuA center in vitro from apo-CoxB and the holo-forms of the copper transfer chaperones ScoI and PcuC. A previously unknown, highly stable ScoI•Cu2+•CoxB complex was shown to be rapidly formed as the first intermediate in the pathway. Moreover, our structural data revealed that PcuC has two copper-binding sites, one each for Cu1+ and Cu2+, and that only PcuC•Cu1+•Cu2+ can release CoxB•Cu2+ from the ScoI•Cu2+•CoxB complex. The CoxB•CuA center was then formed quantitatively by transfer of Cu1+ from a second equivalent of PcuC•Cu1+•Cu2+ to CoxB•Cu2+. This metalation pathway is consistent with all available in vivo data and identifies the sources of the Cu ions required for CuA center formation and the order of their delivery to CoxB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.