The basement domes of the central part of western Alps may result either from a multistage tectonic evolution with a dominant horizontal shortening component, an extensional behaviour, or both. The Ambin massif belongs to the "Briançonnais" domain and is located within the HP metamorphic zone. It was chosen for a reappraisal of the tectonic evolution of the Internal Alps in its western segment. Structural investigations have shown that Alpine HP rocks were exhumed in three successive stages. The D1 stage was roughly coeval with the observed peak metamorphic conditions and corresponds to a non-coaxial regime with dominant horizontal shortening and north movement direction. Petrological observations and P-T estimates show that the exhumation process was initiated during D1, the corresponding mechanism being still poorly understood. The D2 stage took place under low-blueschist facies conditions and culminated under greenschist facies conditions. It developed a retrogressive foliation and pervasive shear-zones at all scales that locally define major tectonic contacts. D2 shear zones show a top-to-east movement direction and correspond actually to large-scale detachment faults responsible for the juxtaposition of less metamorphic units above the Ambin basement and thus to a large part of the exhumation of HP rocks toward the surface. D2 shear zones were subsequently deformed by D3 open folds, large antiforms (e.g. the Ambin dome) and associated brittle-ductile D3 shear-bands. The D1 to D3 P-T conditions and P-T path of the blueschists occurring in the deepest part of the Ambin dome, was estimated by using the multi-equilibrium thermobarometric method of the Tweeq and Thermocalc softwares. Peak pressure conditions, estimated at about 14-16 Kb, 500 o C, are followed by a nearly-isothermal decompression that occurred concurrently with the major D1-D2 change in the ductile deformation regime. Eastwards, the Schistes Lustrés units exhibit a similar geometry on top of the Gran Paradiso dome but exhibit opposite D2 movement direction. Lower-grade units are lying above higher-grade units, the shear zones occurring in between being similar to Ambin's D2 detachments. Thus at regional scale, the D2 detachments seem to form together with the Ambin shear-zones, a network of conjugate detachments. Such a pattern suggests that the exhumation history is mostly controlled by a D2+D3 crustal-scale vertical shortening resulting in the thinning of the previous tectonic pile formed during D1. The slab-break off hypothesis may explain such an extensional behaviour within the western Pennine domain. It is suggested that the thermo-mechanical rebound of the residual European slab initiated between 35 and 32 Ma the fast exhumation of the previously thickened orogenic wedge (stack of D1 HP slices). It was immediately followed by a collapse of the wedge that may correspond to the E-W Oligocene extensional event responsible for the opening of rifts in the West European platform. Évolution structurale et métamorphique du massif d'Ambin (Alpes occ...
The Ambin and South Vanoise Briançonnais basement domes, located within the HP metamorphic zone, were chosen for a reappraisal of the early tectonic evolution of the Internal Alps in their western segment. Finite strain analyses have shown that HP rocks were exhumed in two main successive stages, more or less expressed according to their structural position in the massifs. A partitioning of deformation, from core to rim of the domes, is thus evidenced. The D 1 stage was roughly coeval with the observed peak metamorphic conditions and corresponds in the core of the Ambin dome, to a non-coaxial regime with dominant horizontal shortening and N to NW movement direction. The D 2 stage, well-expressed in the upper part of the domes, took place under low-blueschist facies conditions and culminated under greenschist facies conditions. It developed a retrogressive foliation and pervasive E-verging shear-zones at all scales that locally define major F 2 tectonic contacts. The D 2 shearing is responsible for the development of spectacular F 1 -F 2 fold interference structures recognised in the western part of the South Vanoise dome. In this area, we interpret the steeply-dipping HP-fabric (S 1 ) defining the axial planes of the first generation of now-upright folds (F 1 ) as linked to an early flat-lying nappe edifice (F 1 ) subsequently steepened by the D 2 shearing. Geometry and kinematic characteristics for the early D 1 nappe-forming event are strongly consistent with most evolutionary models assuming that oceanic to European and Apulian crust-derived nappes were initially exhumed during N to NW-verging overthrusting events, synthetic to the subduction. They tend also to suggest that the Penninic HP-units may have suffered an early exhumation by low-angle thrusting, rather than by vertical extrusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.