Parasitism is one of the most successful modes of life displayed by living organisms, as measured by how often it evolved and how many parasitic species are presently in existence. Studying the diversity of parasites is particularly relevant because sympatric diversification may be important in some parasite taxa, and because of the opportunity for independent tests of evolutionary hypotheses in the many separate lineages in which parasitism evolved. Our incomplete knowledge of existing parasite species--the result of a range of phenomena that includes inadequate sampling effort or the lumping of different cryptic species under one name--is not always a major obstacle for the study of parasite diversity. Patterns in the diversity of parasites may be associated with either host or parasite characteristics. The distribution of parasite diversity among host taxa does not simply reflect the species diversity of the host taxa themselves; life history and ecological traits of hosts appear to play important roles. These may determine the likelihood that hosts are colonized by parasite species over evolutionary time. It is not yet clear whether some host traits also favor intrahost speciation and diversification of parasites, and the formation of new parasite species. Certain features of parasites may also be associated with speciation and diversification. Only parasite body size has received much attention; the patterns observed are not greatly different from those of free-living species, with small-bodied parasite taxa being more speciose than related large-bodied taxa. Epidemiological parameters such as the basic reproductive rate of parasites, or R0, can also generate predictions regarding the distribution or evolution of parasite diversity. For instance, parasite taxa characterized by high R0 values may be more speciose than related taxa with lower values of R0; such predictions remain untested. Large-scale biogeographical patterns of diversity have only been well studied for metazoan parasites of marine fish; for these parasites, latitudinal patterns can be explained by effects of temperature on speciation rates and epidemiological variables, though other causes are possible. The emphasis for future research must shift from pattern description to the elucidation of the processes responsible for the structure and diversity of parasite faunas. A better integration of ecological and historical (or phylogenetic) approaches to the study of parasite diversity should make this objective possible.
Comparative analysis methods control for the variation linked to phylogeny before attempting to correlate the remaining variation of a trait to present-day conditions (i.e., ecology and/or environment). A portion of the phylogenetic variation of the trait may be related to ecology, however; this portion is called "phylogenetic niche conservatism." We propose a method of variation partitioning that allows users to quantify this portion of the variation, called the "phylogenetically structured environmental variation." The new method is applied to published data to study, in a phylogenetic framework, the link between body mass and population density in 79 species of mammals. The results suggest that an important part of the variation of mammal body mass is related to the common influence of phylogeny and population density.
BackgroundRodents are recognized as hosts for at least 60 zoonotic diseases and may represent a serious threat for human health. In the context of global environmental changes and increasing mobility of humans and animals, contacts between pathogens and potential animal hosts and vectors are modified, amplifying the risk of disease emergence. An accurate identification of each rodent at a specific level is needed in order to understand their implications in the transmission of diseases. Among the Muridae, the Rattini tribe encompasses 167 species inhabiting South East Asia, a hotspot of both biodiversity and emerging and re-emerging diseases. The region faces growing economical development that affects habitats, biodiversity and health. Rat species have been demonstrated as significant hosts of pathogens but are still difficult to recognize at a specific level using morphological criteria. DNA-barcoding methods appear as accurate tools for rat species identification but their use is hampered by the need of reliable identification of reference specimens. In this study, we explore and highlight the limits of the current taxonomy of the Rattini tribe.ResultsWe used the DNA sequence information itself as the primary information source to establish group membership and estimate putative species boundaries. We sequenced two mitochondrial and one nuclear genes from 122 rat samples to perform phylogenetic reconstructions. The method of Pons and colleagues (2006) that determines, with no prior expectations, the locations of ancestral nodes defining putative species was then applied to our dataset. To give an appropriate name to each cluster recognized as a putative species, we reviewed information from the literature and obtained sequences from a museum holotype specimen following the ancient DNA criteria.ConclusionsUsing a recently developed methodology, this study succeeds in refining the taxonomy of one of the most difficult groups of mammals. Most of the species expected within the area were retrieved but new putative species limits were also indicated, in particular within Berylmys and Rattus genera, where future taxonomic studies should be directed. Our study lays the foundations to better investigate rodent-born diseases in South East Asia and illustrates the relevance of evolutionary studies for health and medical sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.