1 The action of analogues and C-terminal fragments of neuropeptide Y (NPY) was examined on excitatory synaptic transmission in area CAl of the rat hippocampal slice in vitro, by use of intracellular and extracellular recordings, to determine by agonist profile the NPY receptor subtype mediating presynaptic inhibition. 2 Neither NPY, analogues nor fragments of NPY affected the passive or active properties of the postsynaptic CAL pyramidal neurones, indicating their action is at a presynaptic site. 3 The full-sequence analogues, peptide YY (PYY) and human NPY (hNPY), were equipotent with NPY at the presynaptic receptor, while desamido hNPY was without activity. 4 NPY2-36 was equipotent with NPY. Fragments as short as NPY13-36 were active, but gradually lost activity with decreasing length. NPY16-36 had no effect on extracellular field potentials, but still significantly inhibited excitatory postsynaptic potential amplitudes. Fragments shorter than NPY16-36 had no measurable effect on synaptic transmission. 5 The presynaptic NPY receptor in hippocampal CAL therefore shares an identical agonist profile with the presynaptic Y2 receptor at the peripheral sympathetic neuroeffector junction.
Some evidence has suggested the existence and differential distribution of neuropeptide Y (NPY) receptor subtypes in the mammalian brain (Dumont et al., 1990; Aicher et al., 1991). We now report on the extensive characterization and visualization of at least two classes of NPY receptor sites using a highly selective Y1 analog, [Leu31,Pro34]-NPY or [Pro34]-NPY, and a relatively specific Y2 competitor, NPY13-36. Autoradiographic studies using 125I-peptide YY (125I-PYY) clearly reveal that the Y1 receptor subtype is most abundant in various cortical areas, the dentate gyrus of the hippocampal formation, the claustrum, and the reuniens nucleus of the thalamus. In most other regions, 125I-PYY binding is potently inhibited by increasing concentrations of either NPY2-36 or NPY13-36, suggesting a Y2-like profile. Furthermore, binding assays using homogenates from discrete brain regions clearly demonstrate that various NPY fragments and analogs compete for 125I-PYY labeling with profiles indicative of heterogeneity of NPY receptor subtypes, even in the presence of a selective Y1 blocker. Thus, it is likely that, in addition to the Y1 receptor, which is particularly concentrated in cortical areas, the rat brain is enriched with a receptor class (Y2) that can exist under high- or low-affinity states or with additional receptor subtypes that are recognized by 125I-PYY. These findings cannot be explained by the existence of the very recently reported Y3 receptor subtype, since PYY does not possess significant affinity to this site (Grundemar et al., 1991). Further experiments are currently in progress to determine the nature and functional significance of each of these NPY/PYY receptor sites.
Studies support a role for glucagon-like peptide 1 (GLP-1) as a potential treatment for diabetes. However, since GLP-1 is rapidly degraded in the circulation by cleavage at Ala(2), its clinical application is limited. Hence, understanding the structure-activity of GLP-1 may lead to the development of more stable and potent analogues. In this study, we investigated GLP-1 analogues including those with N-, C-, and midchain modifications and a series of secretin-class chimeric peptides. Peptides were analyzed in CHO cells expressing the hGLP-1 receptor (R7 cells), and in vivo oral glucose tolerance tests (OGTTs) were performed after injection of the peptides in normal and diabetic (db/db) mice. [D-Ala(2)]GLP-1 and [Gly(2)]GLP-1 showed normal or relatively lower receptor binding and cAMP activation but exerted markedly enhanced abilities to reduce the glycemic response to an OGTT in vivo. Improved biological effectiveness of [D-Ala(2)]GLP-1 was also observed in diabetic db/db mice. Similarly, improved biological activity of acetyl- and hexenoic-His(1)-GLP-1, glucagon((1-5)-, glucagon((1-10))-, PACAP(1-5)-, VIP(1-5)-, and secretin((1-10))-GLP-1 was observed, despite normal or lower receptor binding and activation in vitro. [Ala(8/11/12/16)] substitutions also increased biological activity in vivo over wtGLP-1, while C-terminal truncation of 4-12 amino acids abolished receptor binding and biological activity. All other modified peptides examined showed normal or decreased activity in vitro and in vivo. These results indicate that specific N- and midchain modifications to GLP-1 can increase its potency in vivo. Specifically, linkage of acyl-chains to the alpha-amino group of His(1) and replacement of Ala(2) result in significantly increased biological effects of GLP-1 in vivo, likely due to decreased degradation rather than enhanced receptor interactions. Replacement of certain residues in the midchain of GLP-1 also augment biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.