Livestock industries are vulnerable to disease threats, which can cost billions of dollars and have substantial negative social ramifications. Losses are mitigated through increased use of disease-related biosecurity practices, making increased biosecurity an industry goal. Currently, there is no industry-wide standard for sharing information about disease incidence or on-site biosecurity strategies, resulting in uncertainty regarding disease prevalence and biosecurity strategies employed by industry stakeholders. Using an experimental simulation game, with primarily student participants, we examined willingness to invest in biosecurity when confronted with disease outbreak scenarios. We varied the scenarios by changing the information provided about 1) disease incidence and 2) biosecurity strategy or response by production facilities to the threat of disease. Here we show that willingness to invest in biosecurity increases with increased information about disease incidence, but decreases with increased information about biosecurity practices used by nearby facilities. Thus, the type or context of the uncertainty confronting the decision maker may be a major factor influencing behavior. Our findings suggest that policies and practices that encourage greater sharing of disease incidence information should have the greatest benefit for protecting herd health.
Disease in U.S. animal livestock industries annually costs over a billion dollars. Adoption and compliance with biosecurity practices is necessary to successfully reduce the risk of disease introduction or spread. Yet, a variety of human behaviors, such as the urge to minimize time costs, may induce non-compliance with biosecurity practices. Utilizing a “serious gaming” approach, we examine how information about infection risk impacts compliance with biosecurity practices. We sought to understand how simulated environments affected compliance behavior with treatments that varied using three factors: (1) the risk of acquiring an infection, (2) the delivery method of the infection risk message (numerical, linguistic and graphical), and (3) the certainty of the infection risk information. Here we show that compliance is influenced by message delivery methodology, with numeric, linguistic, and graphical messages showing increasing efficacy, respectively. Moreover, increased situational uncertainty and increased risk were correlated with increases in compliance behavior. These results provide insight toward developing messages that are more effective and provide tools that will allow managers of livestock facilities and policy makers to nudge behavior toward more disease resilient systems via greater compliance with biosecurity practices.
Hog producers' operational decisions can be informed by an awareness of risks associated with emergent and endemic diseases. Outbreaks of porcine epidemic diarrhea virus (PEDv) have been re-occurring every year since the first onset in 2013 with substantial losses across the hog production supply chain. Interestingly, a decreasing trend in PEDv incidence is visible. We assert that changes in human behaviors may underlie this trend. Disease prevention using biosecurity practices is used to minimize risk of infection but its efficacy is conditional on human behavior and risk attitude. Standard epidemiological models bring important insights into disease dynamics but have limited predictive ability. Since research shows that human behavior plays a driving role in the disease spread process, the explicit inclusion of human behavior into models adds an important dimension to understanding disease spread. Here we analyze PEDv incidence emerging from an agent-based model (ABM) that uses both epidemiological dynamics and algorithms that incorporate heterogeneous human decisions. We investigate the effects of shifting fractions of hog producers between risk tolerant and risk averse positions. These shifts affect the dynamics describing willingness to increase biosecurity as a response to disease threats and, indirectly, change infection probabilities and the resultant intensity and impact of the disease outbreak. Our ABM generates empirically verifiable patterns of PEDv transmission. Scenario results show that relatively small shifts (10% of the producer agents) toward a risk averse position can lead to a significant decrease in total incidence. For significantly steeper decreases in disease incidence, the model's hog producer population needed at least 37.5% of risk averse. Our study provides insight into the link between risk attitude, decisions related to biosecurity, and consequent spread of disease within a livestock production system. We suggest that it is possible to create positive, lasting changes in animal health by nudging the population of livestock producers toward more risk averse behaviors. We make a case for integrating social and epidemiological aspects in disease spread models to test intervention strategies intended to improve biosecurity and animal health at the system scale.
An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents’ contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments—defined by one-phase, two-phase, and three-phase production systems—a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer–producer edges may be largely responsible for the superior disease resilience of single-phase “farrow to finish” production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.