BackgroundRestriction-modification (R-M) systems protect bacteria and archaea from attacks by bacteriophages and archaeal viruses. An R-M system specifically recognizes short sites in foreign DNA and cleaves it, while such sites in the host DNA are protected by methylation. Prokaryotic viruses have developed a number of strategies to overcome this host defense. The simplest anti-restriction strategy is the elimination of recognition sites in the viral genome: no sites, no DNA cleavage. Even a decrease of the number of recognition sites can help a virus to overcome this type of host defense. Recognition site avoidance has been a known anti-restriction strategy of prokaryotic viruses for decades. However, recognition site avoidance has not been systematically studied with the currently available sequence data. We analyzed the complete genomes of almost 4000 prokaryotic viruses with known host species and more than 17,000 restriction endonucleases with known specificities in terms of recognition site avoidance.ResultsWe observed considerable limitations of recognition site avoidance as an anti-restriction strategy. Namely, the avoidance of recognition sites is specific for dsDNA and ssDNA prokaryotic viruses. Avoidance is much more pronounced in the genomes of non-temperate bacteriophages than in the genomes of temperate ones. Avoidance is not observed for the sites of Type I and Type IIG systems and is very rarely observed for the sites of Type III systems. The vast majority of avoidance cases concern recognition sites of orthodox Type II restriction-modification systems. Even under these constraints, complete or almost complete elimination of sites is observed for approximately one-tenth of viral genomes and a significant under-representation for approximately one-fourth of them.ConclusionsAvoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5324-3) contains supplementary material, which is available to authorized users.
Restriction-modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution of the specificity of R-M systems. This review focuses on the influence of R-M systems on evolution and ecology of prokaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.