Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.
In recent decades, experimental data has accumulated indicating that short interspersed nuclear elements (SINEs) can play a significant functional role in the regulation of gene expression in the host genome. In addition, molecular markers based on SINE insertion polymorphisms have been developed and are widely used for genetic differentiation of populations of eukaryotic organisms. Using routine bioinformatics analysis and publicly available genomic DNA and small RNA-seq data, we first described nine SINEs in the genome of the German cockroach, Blattella germanica. All described SINEs have tRNA promoters, and the start of their transcription begins 11 bp upstream of an “A” box of these promoters. The number of copies of the described SINEs in the B. germanica genome ranges from several copies to more than a thousand copies in a SINE-specific manner. Some of the described SINEs and their degenerate copies can be localized both in the introns of genes and loci known as piRNA clusters. piRNAs originating from piRNA clusters are shown to be mapped to seven of the nine types of SINEs described, including copies of SINEs localized in gene introns. We speculate that SINEs, localized in the introns of certain genes, may regulate the level of expression of these genes by a PIWI-related molecular mechanism.
The structural and functional organization of the ribosomal RNA gene cluster and the full-length R2 non-LTR retrotransposon (integrated into a specific site of 28S ribosomal RNA genes) of the German cockroach, Blattella germanica, is described. A partial sequence of the R2 retrotransposon of the cockroach Rhyparobia maderae is also analyzed. The analysis of previously published next-generation sequencing data from the B. germanica genome reveals a new type of retrotransposon closely related to R2 retrotransposons but with a random distribution in the genome. Phylogenetic analysis reveals that these newly described retrotransposons form a separate clade. It is shown that proteins corresponding to the open reading frames of newly described retrotransposons exhibit unequal structural domains. Within these retrotransposons, a recombination event is described. New mechanism of transposition activity is discussed. The essential structural features of R2 retrotransposons are conserved in cockroaches and are typical of previously described R2 retrotransposons. However, the investigation of the number and frequency of 5′-truncated R2 retrotransposon insertion variants in eight B. germanica populations suggests recent mobile element activity. It is shown that the pattern of 5′-truncated R2 retrotransposon copies can be an informative molecular genetic marker for revealing genetic distances between insect populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.