The development of X-ray and electron diffraction methods with ultrahigh time resolution has made it possible to map directly, at the atomic level, structural changes in solids induced by laser excitation. This has resulted in unprecedented insights into the lattice dynamics of solids undergoing phase transitions. In aluminium, for example, femtosecond optical excitation hardly affects the potential energy surface of the lattice; instead, melting of the material is governed by the transfer of thermal energy between the excited electrons and the initially cold lattice. In semiconductors, in contrast, exciting approximately 10 per cent of the valence electrons results in non-thermal lattice collapse owing to the antibonding character of the conduction band. These different material responses raise the intriguing question of how Peierls-distorted systems such as bismuth will respond to strong excitations. The evolution of the atomic configuration of bismuth upon excitation of its A(1g) lattice mode, which involves damped oscillations of atoms along the direction of the Peierls distortion of the crystal, has been probed, but the actual melting of the material has not yet been investigated. Here we present a femtosecond electron diffraction study of the structural changes in crystalline bismuth as it undergoes laser-induced melting. We find that the dynamics of the phase transition depend strongly on the excitation intensity, with melting occurring within 190 fs (that is, within half a period of the unperturbed A(1g) lattice mode) at the highest excitation. We attribute the surprising speed of the melting process to laser-induced changes in the potential energy surface of the lattice, which result in strong acceleration of the atoms along the longitudinal direction of the lattice and efficient coupling of this motion to an unstable transverse vibrational mode. That is, the atomic motions in crystalline bismuth can be electronically accelerated so that the solid-to-liquid phase transition occurs on a sub-vibrational timescale.
Cytochrome c (Cyt c) is a heme protein involved in electron transfer and also in apoptosis. Its heme iron is bisaxially ligated to histidine and methionine side chains and both ferric and ferrous redox states are physiologically relevant, as well as a ligand exchange between internal residue and external diatomic molecule. The photodissociation of internal axial ligand was observed for several ferrous heme proteins including Cyt c, but no time-resolved studies have been reported on ferric Cyt c. To investigate how the oxidation state of the heme influences the primary photoprocesses, we performed a comprehensive comparative study on horse heart Cyt c by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We found that in ferric Cyt c, in contrast to ferrous Cyt c, the photodissociation of an internal ligand does not take place, and relaxation dynamics is dominated by vibrational cooling in the ground electronic state of the heme. The intermolecular vibrational energy transfer was found to proceed in a single phase with a temperature decay of approximately 7 ps in both ferric and ferrous Cyt c. For ferrous Cyt c, the instantaneous photodissociation of the methionine side chain from the heme iron is the dominant event, and its rebinding proceeds in two phases, with time constants of approximately 5 and approximately 16 ps. A mechanism of this process is discussed, and the difference in photoinduced coordination behavior between ferric and ferrous Cyt c is explained by an involvement of the excited electronic state coupled with conformational relaxation of the heme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.