We consider F/M/Type IIA theory compactified to four, three, or two dimensions on a Calabi-Yau four-fold, and study the behavior near an isolated singularity in the presence of appropriate fluxes and branes. We analyze the vacuum and soliton structure of these models, and show that near an isolated singularity, one often generates massless chiral superfields and a superpotential, and in many instances in two or three dimensions one obtains nontrivial superconformal field theories. In the case of two dimensions, we identify some of these theories with certain Kazama-Suzuki coset models, such as the N = 2 minimal models.
In the gauge theory approach to the geometric Langlands program, ramification can be described in terms of "surface operators," which are supported on two-dimensional surfaces somewhat as Wilson or 't Hooft operators are supported on curves. We describe the relevant surface operators in N = 4 super Yang-Mills theory, and the parameters they depend on, and analyze how S-duality acts on these parameters. Then, after compactifying on a Riemann surface, we show that the hypothesis of S-duality for surface operators leads to a natural extension of the geometric Langlands program for the case of tame ramification. The construction involves an action of the affine Weyl group on the cohomology of the moduli space of Higgs bundles with ramification, and an action of the affine braid group on A-branes or B-branes on this space.
We propose a dictionary between geometry of triangulated 3-manifolds and physics of three-dimensional N = 2 gauge theories. Under this duality, standard operations on triangulated 3-manifolds and various invariants thereof (classical as well as quantum) find a natural interpretation in field theory. For example, independence of the SL(2) Chern-Simons partition function on the choice of triangulation translates to a statement that S 3 b partition functions of two mirror 3d N = 2 gauge theories are equal. Three-dimensional N = 2 field theories associated to 3-manifolds can be thought of as theories that describe boundary conditions and duality walls in four-dimensional N = 2 SCFTs, thus making the whole construction functorial with respect to cobordisms and gluing.
Recently, a duality between Liouville theory and four dimensional N = 2 gauge theory has been uncovered by some of the authors. We consider the role of extended objects in gauge theory, surface operators and line operators, under this correspondence. We map such objects to specific operators in Liouville theory. We employ this connection to compute the expectation value of general supersymmetric 't Hooft-Wilson line operators in a variety of N = 2 gauge theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.