In this work we investigate a periodic structure in the frequency range from 20 Hz to 5500 Hz designed for broadband noise insulation. The considered unit cell consists of a simple structure: a pair of polymer pipes with slits carved along the axes, representing two coupled Helmholtz resonators. In order to develop a design with a broad band gap, we analyze the eigenmodes of the infinite two-dimensional structure considering their symmetry and interaction. This analysis is supported by parametric optimization of the resonator geometry. The obtained band diagram is compared with numerically determined transmission coefficient of a finite structure based on the same unit cell. The number of unit cells of the finite structure is chosen to be sufficient for demonstration of insulating properties and stop band formation. Furthermore, we analyze how the transmission coefficient is linked to the pressure field distribution inside the resonators. Owing to the simplicity of the geometry, the obtained results may become a basis for development of budget-friendly passive systems for broadband noise insulation within the audible range of frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.