Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent N-methyl-2-pyrrolidone (NMP). At high concentrations some very large (approximately 100 s of micrometers) nanotube aggregates exist that can be removed by mild centrifugation. By measurement of the absorbance before and after centrifugation as a function of concentration the relative aggregate and dispersed nanotube concentrations can be monitored. No aggregates are observed below CNT approximately 0.02 mg/mL, suggesting that this can be considered the nanotube dispersion limit in NMP. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of weeks at least. Atomic force microscopy (AFM) studies on deposited films reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density and that the dispersions self-arrange themselves to always remain close to the dilute/semidilute boundary. A population of individual nanotubes is always observed that increases with decreasing concentration until almost 70% of all dispersed objects are individual nanotubes at a concentration of 0.004 mg/mL. The number density of individual nanotubes peaks at a concentration of approximately 10(-2) mg/mL. Both the mass fraction and the partial concentration of individual nanotubes can also be measured and behave in similar fashion. Comparison of the number density and partial concentration also of individual nanotubes reveals that the individual nanotubes have average molar masses of approximately 700,000 g/mol. The presence of individual nanotubes in NMP dispersion was confirmed by photoluminescence spectroscopy. Concentration dependence of the photoluminescence intensity confirms that the AFM measurements reflect the diameter distributions in situ. In addition, Raman spectroscopy confirms the presence of large quantities of individual nanotubes in the deposited films. Finally, the nature of the solvent properties required for dispersion are discussed.
We measure electron tunneling in transistors made from C 140 , a molecule with a mass−spring−mass geometry chosen as a model system to study electron-vibration coupling. We observe vibration-assisted tunneling at an energy corresponding to the stretching mode of C 140 . Molecular modeling provides explanations for why this mode couples more strongly to electron tunneling than to the other internal modes of the molecule. We make comparisons between the observed tunneling rates and those expected from the Franck−Condon model. When electrons travel through molecules, vibrational modes of the molecules can affect current flow. Molecular-vibrationassisted tunneling was first measured in the 1960s using devices whose tunnel barriers contained many molecules. 1 Recently, effects of vibrations in single molecules have been measured using scanning tunneling microscopes, 2 singlemolecule transistors, 3,4 and mechanical break junctions. 5 Theoretical considerations suggest that different regimes may exist depending on whether tunneling electrons occupy resonant energy levels on the molecule, and also on the relative magnitudes of the rate of electron flow, the vibrational frequency, and the damping rate of vibrational energy. [6][7][8][9][10][11][12][13][14] A quantitative analysis of electron-vibration interactions has been difficult to achieve in previous molecular-transistor experiments. In transistors made from cobalt coordination complexes, 4 neither the precise nature of the vibrational modes nor their energies was determined independently of transport measurements. In transistors made from C 60 , 3 the "bouncing-ball" mode of a single C 60 molecule against a gold surface was observed, a mode not intrinsic to the molecule itself. In this letter we study single-molecule transistors made using a molecule, C 140 , with low-energy internal vibrational modes that are well understood. We observe clear signatures
Aqueous suspensions of length selected single-walled carbon nanotubes were studied by atomic force microscopy (AFM) in order to probe the influence of sonication on nanotube scission. The maximum of the tube length distribution, lM, initially exhibits a power law dependence on the sonication time, t - roughly as lM approximately t(-0.5). This and the limiting behavior observed at longer times can be rationalized to first order in terms of a continuum model deriving from polymer physics. In this picture, the strain force associated with cavitation scales with the square of the nanotube length. Scission stops when the strain force falls below the critical value for nanotube disruption.
We report a facile particle mediated aggregation protocol to synthesize "sea urchin"-like gold mesoparticles with tailored surface topography via a secondary nucleation and growth process. Surprisingly, these multitip Au mesoparticles are capable of self-assembling into monolayer or multiple layer arrays on Si substrates with a convincing reproducibility and homogeneity over large areas. Raman measurements show that these individual sea urchin-like multitipped gold mesoparticles exhibit a high enhancement of surface-enhanced Raman scattering (SERS). In addition, the sea urchin-like mesoparticle arrays display a further enhancement of SERS by 1 or 2 orders of magnitude over the individual mesoparticle due to the formation of additional hot spots between the particles. The current protocol stands out as a potentially interesting approach for the fabrication of technologically important SERS-based sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.