Prostate volume estimates obtained with a fully automated 3D segmentation tool based on normalized gradient fields cross-correlation and graph-search refinement can yield highly accurate prostate volume estimates in a clinically relevant time of 10 seconds. This tool will assist in developing a broad range of applications including routine prostate volume estimations, image registration, biopsy guidance, and decision support systems.
The primary stage of a pulmonary nodule detection system is typically a candidate generator that efficiently provides the centroid location and size estimate of candidate nodules. A scale-normalized Laplacian of Gaussian (LOG) filtering method presented in this paper has been found to provide high sensitivity along with precise locality and size estimation. This approach involves a computationally efficient algorithm that is designed to identify all solid nodules in a whole lung anisotropic CT scan.This nodule candidate generator has been evaluated in conjunction with a set of discriminative features that target both isolated and attached nodules. The entire detection system was evaluated with respect to a sizeenriched dataset of 656 whole-lung low-dose CT scans containing 459 solid nodules with diameter greater than 4 mm. Using a soft margin SVM classifier, and setting false positive rate of 10 per scan, we obtained a sensitivity of 97% for isolated, 93% for attached, and 89% for both nodule types combined. Furthermore, the LOG filter was shown to have good agreement with the radiologist ground truth for size estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.