To improve recruitment and activation of natural killer (NK) cells to lyse tumor cells, we isolated a human anti-CD16A antibody with similar affinity for the CD16A 158F/V allotypes, but no binding to the CD16B isoform. Using CD16A-targeting Fv domains, we constructed a tetravalent bispecific CD30/CD16A tandem diabody (TandAb®) consisting solely of Fv domains. This TandAb has two binding sites for CD16A and two for CD30, the antigen identifying Hodgkin lymphoma cells. The binding and cytotoxicity of the TandAb were compared with antibodies with identical anti-CD30 domains: (1) a native IgG, (2) an IgG optimized for binding to Fc receptors, and (3) a bivalent bispecific CD30/CD16A diabody. Due to its CD16A-bivalency and reduced koff, the TandAb was retained longer on the surface of NK cells than the IgGs or the diabody. This contributed to the higher potency and efficacy of the TandAb relative to those of the other anti-CD30 antibodies. TandAb cytotoxicity was independent of the CD16A allotype, whereas the anti-CD30 IgGs were substantially less cytotoxic when NK cells with low affinity CD16A allotype were employed. TandAb activation of NK cells was strictly dependent on the presence of CD30+ target cells. Therefore, the CD30/CD16A TandAb may represent a promising therapeutic for the treatment of Hodgkin’s lymphoma; further, anti-CD16A TandAbs may function as potent immunotherapeutics that specifically recruit NK cells to destroy cancer cells.
The epithelial cell adhesion molecule (EpCAM) is expressed by a wide range of human carcinomas, making it an attractive diagnostic and therapeutic target in oncology. Its recent identification on cancer stem cells has raised further interest in its use for tumor targeting and therapy. Here, we present the characterization and therapeutic potential of 3–17I, a novel human EpCAM-targeting monoclonal antibody. Strong reaction of 3–17I was observed in all lung, colon, and breast human tumor biopsies evaluated. By flow cytometry and confocal fluorescence microscopy, we demonstrate that 3–17I specifically targets EpCAM-positive cell lines. We also show evidence for mAb-sequestration in endo-/lysosomes, suggesting internalization of 3–17I by receptor-mediated endocytosis. The ribosomal-inactivating toxin saporin was linked to 3–17I, creating the per se non-toxic immunotoxin 3–17I-saporin, a promising candidate for the drug delivery technology photochemical internalization (PCI). PCI is based on a light-controlled destruction of endolysosomal membranes and subsequent cytosolic release of the sequestered payload upon light exposure. EpCAM-positive human cancer cell lines MCF7 (breast), BxPC-3 (pancreas), WiDr (colon), and the EpCAM-negative COLO320DM (colon), were treated with 3–17I-saporin in combination with the clinically relevant photosensitizer TPCS2a (Amphinex), followed by exposure to light. No cytotoxicity was observed after treatment with 3–17I-saporin without light exposure. However, cell viability, proliferation and colony-forming capacity was strongly reduced in a light-dependent manner after PCI of 3–17I. Our results show that 3–17I is an excellent candidate for diagnosis of EpCAM-positive tumors and for development of clinically relevant antibody-drug conjugates, using PCI for the treatment of localized tumors.
BackgroundCC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis.MethodologyUsing phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies.SignificanceFor the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.
Signaling via the AXL receptor tyrosine kinase is a key suppressor of the anti-tumor innate immune response. AXL is expressed on several cells associated with the tumor immune microenvironment including natural killer cells, dendritic cells and tumor-associated macrophages. AXL is also an important regulator of tumor plasticity related to epithelial-to-mesenchymal transition (EMT) that drives tumor immune evasion and resistance to cytotoxic T cell-mediated cell killing. Hence AXL signaling contributes uniquely to both tumor cell intrinsic and microenvironmental anti-tumor immune suppression mechanisms. We therefore evaluated whether blocking AXL signaling with BGB324, a selective clinical-stage small molecule Axl kinase inhibitor, enhances the effect of immune checkpoint blockade in syngeneic cancer mouse models that display limited immunogenicity. We conducted studies in the aggressive mammary adenocarcinoma (4T1) syngeneic (Balb/C) mouse model. We found that AXL expression increased in 4T1 tumors treated with anti-CTLA-4/anti-PD-1 and correlated with lack of response to immune therapy. Combination with BGB324 (50 mg/kg bid) significantly enhanced responsiveness to anti-CTLA-4/anti-PD-1 treatment (10 mg/kg of each, 4 doses) in Balb/C mice bearing established 4T1 tumors. The combination of BGB324 + anti-CTLA-4/anti-PD-1 resulted in durable primary tumor clearance in 23% of treated mice versus 5.6% obtained with anti-CTLA-4/anti-PD-1 alone (p = 0.0157). In a separate study, BGB324 + anti-CTLA-4 treated resulted in 22% long-term primary tumor clearance while no response was observed with anti-CTLA4 treatment alone. The extensive metastasis to the lung, liver and spleen characteristic of this model were concomitantly abrogated in the animals responding to the combination treatment. In addition, BGB324 + anti-CTLA-4/anti-PD-1 treated tumors displayed enhanced infiltration of cytotoxic T lymphocytes. Importantly, responding animals rejected orthotopic 4T1 tumor cell re-challenge, demonstrating sustained tumor immunity. In conclusion, targeting AXL signaling represents a unique opportunity to address multiple tumor immune suppression mechanisms. Our results support combining the clinical-stage AXL inhibitor, BGB324, with immune checkpoint inhibitors to improve treatment of human cancers. Citation Format: Gro Gausdal, Kjersti Davidsen, Katarzyna Wnuk-Lipinska, Kathleen Wiertel, Jing Kang, Agnete Engelsen, Sébastien Bougnaud, Monica Hellesøy, Magnus Blø, Lavina Ahmed, Linn Hodneland, Sergej Kiprijanov, Oddbjørn Straume, Rolf A. Brekken, James B. Lorens. BGB324, a selective small molecule inhibitor of the receptor tyrosine kinase AXL, enhances immune checkpoint inhibitor efficacy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 566.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.