We study conservation properties of Galerkin methods for the incompressible NavierStokes equations, without the divergence constraint strongly enforced. In typical discretizations such as the mixed finite element method, the conservation of mass is enforced only weakly, and this leads to discrete solutions which may not conserve energy, momentum, angular momentum, helicity, or vorticity, even though the physics of the Navier-Stokes equations dictate that they should. We aim in this work to construct discrete formulations that conserve as many physical laws as possible without utilizing a strong enforcement of the divergence constraint, and doing so leads us to a new formulation that conserves each of energy, momentum, angular momentum, enstrophy in 2D, helicity and vorticity (for reference, the usual convective formulation does not conserve most of these quantities). Several numerical experiments are performed, which verify the theory and test the new formulation.
We study discretizations of the incompressible Navier-Stokes equations, written in the newly developed energy-momentum-angular momentum conserving (EMAC) formulation. We consider linearizations of the problem, which at each time step will reduce the computational cost, but can alter the conservation properties. We show that a skew-symmetrized linearization delivers the correct balance of (only) energy and that the Newton linearization conserves momentum and angular momentum, but conserves energy only up to the nonlinear residual. Numerical tests show that linearizing with 2 Newton steps at each time step is very effective at preserving all conservation laws at once, and giving accurate answers on long time intervals. The tests also show that the skew-symmetrized linearization is significantly less accurate. The tests also show that the Newton linearization of EMAC finite element formulation compares favorably to other traditionally used finite element formulation of the incompressible Navier-Stokes equations in primitive variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.