Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various treelike structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional nontrivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and Pólya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.
No abstract
We obtain exact expressions counting the satisfiable 2-SAT formulae and describe the structure of associated implication digraphs. Our approach is based on generating function manipulations. To reflect the combinatorial specificities of the implication digraphs, we introduce a new kind of generating function, the Implication generating function, inspired by the Graphic generating function used in digraph enumeration. Using the underlying recurrences, we make accurate numerical predictions of the phase transition curve of the 2-SAT problem inside the critical window. We expect these exact formulae to be amenable to rigorous asymptotic analysis using complex analytic tools, leading to a more detailed picture of the 2-SAT phase transition in the future.
We present a quantitative, statistical analysis of random lambda terms in the de Bruijn notation. Following an analytic approach using multivariate generating functions, we investigate the distribution of various combinatorial parameters of random open and closed lambda terms, including the number of redexes, head abstractions, free variables or the de Bruijn index value profile. Moreover, we conduct an average-case complexity analysis of finding the leftmost-outermost redex in random lambda terms showing that it is on average constant. The main technical ingredient of our analysis is a novel method of dealing with combinatorial parameters inside certain infinite, algebraic systems of multivariate generating functions. Finally, we briefly discuss the random generation of lambda terms following a given skewed parameter distribution and provide empirical results regarding a series of more involved combinatorial parameters such as the number of open subterms and binding abstractions in closed lambda terms.
We show that by restricting the degrees of the vertices of a graph to an arbitrary set ∆, the threshold point α(∆) of the phase transition for a random graph with n vertices and m = α(∆)n edges can be either accelerated (e.g., α(∆) ≈ 0.381 for ∆ = {0, 1, 4, 5}) or postponed (e.g., α({2 0 , 2 1 , · · · , 2 k , · · · }) ≈ 0.795) compared to a classical Erdős-Rényi random graph with α(Z ≥0 ) = 1 2 . In particular, we prove that the probability of graph being nonplanar and the probability of having a complex component, goes from 0 to 1 as m passes α(∆)n. We investigate these probabilities and also different graph statistics inside the critical window of transition (diameter, longest path and circumference of a complex component).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.