The determinant of verapamil-reversible chloroquine resistance (CQR) in a Plasmodium falciparum genetic cross maps to a 36 kb segment of chromosome 7. This segment harbors a 13-exon gene, pfcrt, having point mutations that associate completely with CQR in parasite lines from Asia, Africa, and South America. These data, transfection results, and selection of a CQR line harboring a novel K761 mutation point to a central role for the PfCRT protein in CQR. This transmembrane protein localizes to the parasite digestive vacuole (DV), the site of CQ action, where increased compartment acidification associates with PfCRT point mutations. Mutations in PfCRT may result in altered chloroquine flux or reduced drug binding to hematin through an effect on DV pH.
Natural killer (NK) cells hold promise for cancer therapy. NK cytotoxicity can be enhanced by expression of chimeric antigen receptors that re-direct specificity toward target cells by engaging cell surface molecules expressed on target cells. We developed a regulatory-compliant, scalable non-viral approach to engineer NK cells to be target-specific based on transfection of mRNA encoding chimeric receptors. Transfection of eGFP mRNA into ex vivo expanded NK cells (N ¼ 5) or purified unstimulated NK cells from peripheral blood (N ¼ 4) resulted in good cell viability with eGFP expression in 85 ± 6% and 86 ± 4%, 24 h after transfection, respectively. An mRNA encoding a receptor directed against CD19 (anti-CD19-BB-z) was also transfected into NK cells efficiently. Ex vivo expanded and purified unstimulated NK cells expressing anti-CD19-BB-z exhibited enhanced cytotoxicity against CD19 þ target cells resulting in X80% lysis of acute lymphoblastic leukemia and B-lineage chronic lymphocytic leukemia cells at effector target ratios lower than 10:1. The target-specific cytotoxicity for anti-CD19-BB-z mRNA-transfected NK cells was observed as early as 3 h after transfection and persisted for up to 3 days. The method described here should facilitate the clinical development of NK-based antigen-targeted immunotherapy for cancer. Cancer Gene Therapy (
IntroductionThe capacity of natural killer (NK) 1 cells to exert cytotoxicity against a variety of cancer cell types makes them an attractive tool for anti-cancer therapy. [2][3][4][5][6][7] Data gathered in the setting of allogeneic hematopoietic stem cell transplantation indicate that donor selection based on the degree of mismatch between expression of killer immunoglobulin-like receptors on donor NK cells and HLA Class I molecules expressed by the patient cells should maximize NK cell killing of target cells, 4,[8][9][10] hence augmenting the efficacy of hematopoietic stem cell transplantation. 6,7,11 In addition, it was reported that the infusion of haploidentical NK cells in a nonmyeloablative transplant setting could produce remissions in patients with acute myeloid leukemia. 5 Although NK cell cytotoxicity has a wide spectrum, some cancer cell types appear less susceptible or refractory to NK cell killing, because of failure to activate NK cells, induction of suppression or both. Among these relatively NKresistant cell types are lymphoid malignancies such as acute lymphoblastic leukemia (ALL), B-cell chronic lymphocytic leukemia (B-CLL) and B-cell non-Hodgkin lymphoma. 3,[12][13][14][15][16] Chimeric antigen receptor has been studied since late 1980s. [17][18][19][20][21][22] It generally contains a single chain variable fragment as the extracellular antigen recognition unit and multiple lymphocyte activation domains as the intracellular activation part. Most work has been focused in arming T cells with this chimeric antigen receptor for antitumor effect 21-23 NK cells transduced with chimeric antigen receptor have also been exploited for anti-tumor effect. Various com...
Electric pulses across intact vesicles and cells can lead to transient increase in permeability of their membranes. We studied the integrity of these membranes in response to external electric pulses of high amplitude and submicrosecond duration with a primary aim of achieving selective permeabilization. These effects were examined in two separate model systems comprising of 1), a mixed population of 1,2-di-oleoyl-sn-glycero-3-phosphocholine phospholipid vesicles and in 2), single COS-7 cells, in which large endosomal membrane vacuoles were induced by stimulated endocytosis. It has been shown that large and rapidly varying external electric fields, with pulses shorter than the charging time of the outer-cell membrane, could substantially increase intracellular fields to achieve selective manipulations of intracellular organelles. The underlying principle of this earlier work is further developed and applied to the systems studied here. Under appropriate conditions, we show preferential permeabilization of one vesicle population in a mixed preparation of vesicles of similar size distribution. It is further shown that large endocytosed vacuoles in COS-7 cells can be selectively permeabilized with little effect on the integrity of outer cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.