We demonstrate that with only 1 lm, equivalent bulk thickness, of crystalline silicon, sculpted into the form of a slanted conical-pore photonic crystal and placed on a silver back-reflector, it is possible to attain a maximum achievable photocurrent density (MAPD) of 35.5 mA/cm 2 from impinging sunlight. This corresponds to absorbing roughly 85% of all available sunlight in the wavelength range of 300-1100 nm and exceeds the limits suggested by previous "statistical ray trapping" arguments. Given the AM 1.5 solar spectrum and the intrinsic absorption characteristics of silicon, the optimum carrier generation occurs for a photonic crystal square lattice constant of 850 nm and slightly overlapping inverted cones with upper (base) radius of 500 nm. This provides a graded refractive index profile with good anti-reflection behavior. Light trapping is enhanced by tilting each inverted cone such that one side of each cone is tangent to the plane defining the side of the elementary cell. When the solar cell is packaged with silica (each pore filled with SiO 2), the MAPD in the wavelength range of 400-1100 nm becomes 32.6 mA/cm 2 still higher than the Lambertian 4n 2 benchmark of 31.2 mA/cm 2. In the near infrared regime from 800 to 1100 nm, our structure traps and absorbs light within slow group velocity modes, which propagate nearly parallel to the solar cell interface and exhibit localized high intensity vortex-like flow in the Poynting vector-field. In this near infrared range, our partial MAPD is 10.9 mA/cm 2 compared to a partial MAPD of 7 mA/cm 2 based on "4n 2 statistical ray trapping." These results suggest silicon solar cell efficiencies exceeding 20% with just 1 lm of silicon. V
Waveguide structures with an antisymmetric gain/loss profile were studied more than a decade ago as benchmark tests for beam propagation methods. These structures attracted renewed interest, recently e.g. as photonic analogues of quantum mechanical structures with parity-time symmetry breaking. In this paper, properties of both weakly and strongly guiding two-mode waveguides and directional couplers with balanced loss and gain are described. Rather unusual power transmission in such structures is demonstrated by using numerical methods. We found that the interface between media with balanced loss and gain supports propagation of confined unattenuated TM polarized surface wave and we have shown that its properties are consistent with the prediction of a simple analytical model.
In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ∼0.7% for λ = 400-1000 nm. For the same structure on a much thinner c-Si ( t = 10 μm), the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ∼ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (∼94.7%) of the PC structure on 10 μm c-Si for λ = 400-1000 nm is only ∼3.8% less than the average absorption (∼98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0-60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.
We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300–865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.