The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.
The disease of freshwater sponges was first discovered in 2011, when pink samples were found in the Central Basin of Lake Baikal. Subsequently, the visible signs of the disease have changed, and now sponges appear with various symptoms of damage to the body, such as discoloration, tissue necrosis, the formation of brown patches and dirty-purple biofilms on some branches. These signs of the disease are accompanied by the mass death of sponges. We identified differences in microbiomes by sequencing 16S rRNA genes and found changes in the consortium of microorganisms of freshwater Baikal sponges. We found that the observed imbalance in the studied microbial communities of diseased sponges is caused by several different conditionally pathogenic microorganisms that increase their negative effect by acting together and in concert, which leads to the death of photosynthetic microalgae and sponges. Sponges are an important component of coastal communities, and the massive loss of sponges can obviously affect the structure of benthic communities and the purity of water.
BackgroundDe novo assembling of large genomes, such as in conifers (~ 12–30 Gbp), which also consist of ~ 80% of repetitive DNA, is a very complex and computationally intense endeavor. One of the main problems in assembling such genomes lays in computing limitations of nucleotide sequence assembly programs (DNA assemblers). As a rule, modern assemblers are usually designed to assemble genomes with a length not exceeding the length of the human genome (3.24 Gbp). Most assemblers cannot handle the amount of input sequence data required to provide sufficient coverage needed for a high-quality assembly.ResultsAn original stepwise method of de novo assembly by parts (sets), which allows to bypass the limitations of modern assemblers associated with a huge amount of data being processed, is presented in this paper. The results of numerical assembling experiments conducted using the model plant Arabidopsis thaliana, Prunus persica (peach) and four most popular assemblers, ABySS, SOAPdenovo, SPAdes, and CLC Assembly Cell, showed the validity and effectiveness of the proposed stepwise assembling method.ConclusionUsing the new stepwise de novo assembling method presented in the paper, the genome of Siberian larch, Larix sibirica Ledeb. (12.34 Gbp) was completely assembled de novo by the CLC Assembly Cell assembler. It is the first genome assembly for larch species in addition to only five other conifer genomes sequenced and assembled for Picea abies, Picea glauca, Pinus taeda, Pinus lambertiana, and Pseudotsuga menziesii var. menziesii.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2570-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.