Activation of store-operated channels (SOCs) and capacitative calcium influx are triggered by depletion of intracellular calcium stores. However, the exact molecular mechanism of such communication remains unclear. Recently, we demonstrated that native SOC channels can be activated by calcium influx factor (CIF) that is produced upon depletion of calcium stores, and showed that Ca(2+)-independent phospholipase A(2) (iPLA(2)) has an important role in the store-operated calcium influx pathway. Here, we identify the key plasma-membrane-delimited events that result in activation of SOC channels. We also propose a novel molecular mechanism in which CIF displaces inhibitory calmodulin (CaM) from iPLA(2), resulting in activation of iPLA(2) and generation of lysophospholipids that in turn activate soc channels and capacitative calcium influx. Upon refilling of the stores and termination of CIF production, CaM rebinds to iPLA(2), inhibits it, and the activity of SOC channels and capacitative calcium influx is terminated.
Increased cardiac contractility during fight-or-flight response is caused by β-adrenergic augmentation of Ca V 1.2 channels 1-4. In transgenic murine hearts expressing fully PKA phosphorylation-site-deficient mutant Ca V 1.2 α 1C and β subunits, this regulation persists, implying involvement of extra-channel factors. Here, we identify the mechanism by which β-adrenergic agonists stimulate voltage-gated Ca 2+ channels. We expressed α 1C or β 2B subunits conjugated to ascorbate-peroxidase 5 in mouse hearts and used multiplexed, quantitative proteomics 6,7 to track hundreds of proteins in proximity of Ca V 1.2. We observed that the Ca 2+ channel inhibitor Rad 8,9 , a monomeric G-protein, is enriched in the Ca V 1.2 micro-environment but is depleted during β-adrenergic stimulation. PKA-catalyzed phosphorylation of specific Ser residues on Rad decreases its affinity for auxiliary β-Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
3+ also block I MIC in a voltage-dependent manner (δ = 0.4-0.5). In addition they inhibit the inward current carried by divalent cations. I MIC is regulated by pH. Decreasing or increasing extracellular pH decreased and increased I MIC , respectively (pH 0.5 = 6.9, n H = 0.98). Qualitatively similar results were obtained on I MIC in rat basophilic leukaemia cells. These effects in cardiac myocytes were absent in the presence of high intracellular buffering by 40 mM Hepes. Our results suggest that I MIC in cardiac cells is due to TRPM channels, most probably to TRPM6 or TRPM7 channels or to their heteromultimeres.
The position and role of the unique N-terminal transmembrane (TM) helix, S0, in large-conductance, voltage-and calcium-activated potassium (BK) channels are undetermined. From the extents of intra-subunit, endogenous disulfi de bond formation between cysteines substituted for the residues just outside the membrane domain, we infer that the extracellular fl ank of S0 is surrounded on three sides by the extracellular fl anks of TM helices S1 and S2 and the four-residue extracellular loop between S3 and S4. Eight different double cysteine -substituted alphas, each with one cysteine in the S0 fl ank and one in the S3 -S4 loop, were at least 90% disulfi de cross-linked. Two of these alphas formed channels in which 90% cross-linking had no effect on the V 50 or on the activation and deactivation rate constants. This implies that the extracellular ends of S0, S3, and S4 are close in the resting state and move in concert during voltage sensor activation. The association of S0 with the gating charge bearing S3 and S4 could contribute to the considerably larger electrostatic energy required to activate the BK channel compared with typical voltage-gated potassium channels with six TM helices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.