A systematic new approach to derive multiscale coarse-grained (MS-CG) models has been recently developed. The approach employs information from atomistically detailed simulations to derive CG forces and associated effective potentials. In this work, the MS-CG methodology is extended to study two peptides representing distinct structural motifs, alpha-helical polyalanine and the beta-hairpin V(5)PGV(5). These studies represent the first known application of this approach to peptide systems. Good agreement between the MS-CG and atomistic models is achieved for several structural properties including radial distribution functions, root mean-square deviation, and radius of gyration. The new MS-CG models are able to preserve the native states of these peptides within approximately 1 A backbone root mean-square deviation during CG simulations. The MS-CG approach, as with most coarse-grained models, has the potential to increase the length and timescales accessible to molecular simulations. However, it is also able to maintain a clear connection to the underlying atomistic-scale interactions.
A new particle-based bottom-up method to develop coarse-grained models of polymers is presented and applied to polystyrene. The multiscale coarse-graining (MS-CG) technique of Izvekov et al. [J. Chem. Phys. 120, 10896 (2004)] is applied to a polymer system to calculate nonbonded interactions. The inverse Boltzmann inversion method was used to parametrize the bonded and bond-angle bending interactions. Molecular dynamics simulations were performed, and the CG model exhibited a significantly lower modulus compared to the atomistic model at low temperature and high strain rate. In an attempt to improve the CG model performance, several other parametrization schemes were used to build other models from this base model. The first of these models included standard frictional forces through use of the constant-temperature dissipative particle dynamics method that improved the modulus, yet was not transferrable to higher temperatures and lower strain rates. Other models were built by increasing the attraction between CG beads through direct manipulation of the nonbonded potential, where an improvement of the stress response was found. For these models, two parametrization protocols that shifted the force to more attractive values were explored. The first protocol involved a uniform shift, while the other protocol shifted the force in a more localized region. The uniformly shifted potential greatly affected the structure of the equilibrium model as compared to the locally shifted potential, yet was more transferrable to different temperatures and strain rates. Further improvements in the coarse-graining protocol to generate models that more satisfactorily capture mechanical properties are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.