Despite the high initial response rates to PARP inhibitors (PARPi) in BRCA-mutated epithelial ovarian cancers (EOC), PARPi resistance remains a major challenge. Chemical modifications of RNAs have emerged as a new layer of epigenetic gene regulation. N 6 -methyladenosine (m 6 A) is the most abundant chemical modification of mRNA, yet the role of m 6 A modification in PARPi resistance has not previously been explored. Here, we show that m 6 A modification of FZD10 mRNA contributes to PARPi resistance by upregulating the Wnt/b-catenin pathway in BRCA-mutated EOC cells. Global m 6 A profile revealed a significant increase in m 6 A modification in FZD10 mRNA, which correlated with increased FZD10 mRNA stability and an upregulation of the Wnt/b-catenin pathway. Depletion of FZD10 or inhibition of the Wnt/b-catenin sensitizes resistant cells to PARPi. Mechanistically, downregulation of m 6 A demethylases FTO and ALKBH5 was suffi-cient to increase FZD10 mRNA m 6 A modification and reduce PARPi sensitivity, which correlated with an increase in homologous recombination activity. Moreover, combined inhibition of PARP and Wnt/b-catenin showed synergistic suppression of PARPi-resistant cells in vitro and in vivo in a xenograft EOC mouse model. Overall, our results show that m 6 A contributes to PARPi resistance in BRCA-deficient EOC cells by upregulating the Wnt/b-catenin pathway via stabilization of FZD10. They also suggest that inhibition of the Wnt/b-catenin pathway represents a potential strategy to overcome PARPi resistance.Significance: These findings elucidate a novel regulatory mechanism of PARPi resistance in EOC by showing that m 6 A modification of FZD10 mRNA contributes to PARPi resistance in BRCA-deficient EOC cells via upregulation of Wnt/b-catenin pathway.
Summary PARP inhibition is known to be an effective clinical strategy in BRCA-mutant cancers, but PARP inhibition has not been applied to BRCA-proficient tumors. Here we show synergy of BET bromodomain inhibition with PARP inhibition in BRCA-proficient ovarian cancers due to mitotic catastrophe. Treatment of BRCA-proficient ovarian cancer cells with the BET inhibitor JQ1 downregulated the G2-M cell cycle checkpoint regulator WEE1 and the DNA damage response factor TOPBP1. When combined with the PARP inhibitor Olaparib, we observed a synergistic increase in DNA damage and checkpoint defects, which allowed cells to enter mitosis despite the accumulation of DNA damage, ultimately causing mitotic catastrophe. Moreover, JQ1 and Olaparib showed synergistic suppression of growth of BRCA-proficient cancer in vivo in a xenograft ovarian cancer mouse model. Our findings indicate that a combination of BET inhibitor and PARP inhibitor represents a potential therapeutic strategy for BRCA-proficient cancers.
Highlights d EZH2 inhibitor sensitizes CARM1-high EOC cells to PARP inhibitor d EZH2 inhibitor upregulates MAD2L2 and NHEJ activity in CARM1-high EOC cells d EZH2 and PARP inhibitor combination causes mitotic catastrophe d EZH2 and PARP inhibitors are synergistic in suppressing CARM1-high EOCs in vivo
SUMMARY ARID1A , a subunit of the SWI/SNF complex, is among the most frequently mutated genes across cancer types. ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCCs), diseases that have no effective therapy. Here, we show that ARID1A mutation confers sensitivity to pan-HDAC inhibitors such as SAHA in ovarian cancers. This correlated with enhanced growth suppression induced by the inhibition of HDAC2 activity in ARID1A-mutated cells. HDAC2 interacts with EZH2 in an ARID1A status-dependent manner. HDAC2 functions as a co-repressor of EZH2 to suppress the expression of EZH2/ARID1A target tumor suppressor genes such as PIK3IP1 to inhibit proliferation and promote apoptosis. SAHA reduced the growth and ascites of the ARID1A-inactivated OCCCs in both orthotopic and genetic mouse models. This correlated with a significant improvement of survival of mice bearing ARID1A-mutated OCCCs. These findings provided preclinical rationales for repurposing FDA-approved pan-HDAC inhibitors for treating ARID1A-mutated cancers.
CARM1 is an arginine methyltransferase that asymmetrically dimethylates protein substrates on arginine residues. CARM1 is often overexpressed in human cancers. However, clinically applicable cancer therapeutic strategies based on CARM1 expression remain to be explored. Here, we report that EZH2 inhibition is effective in CARM1-expressing epithelial ovarian cancer. Inhibition of EZH2 activity using a clinically applicable small molecule inhibitor significantly suppresses the growth of CARM1-expressing, but not CARM1-deficient, ovarian tumors in two xenograft models and improves the survival of mice bearing CARM1-expressing ovarian tumors. The observed selectivity correlates with reactivation of EZH2 target tumor suppressor genes in a CARM1-dependent manner. Mechanistically, CARM1 promotes EZH2-mediated silencing of EZH2/BAF155 target tumor suppressor genes by methylating BAF155, which leads to the displacement of BAF155 by EZH2. Together, these results indicate that pharmacological inhibition of EZH2 represents a novel therapeutic strategy for CARM1-expressing cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.