para‐Hydrogen‐induced polarization (PHIP) is a method to rapidly generate hyperpolarized compounds, enhancing the signal of nuclear magnetic resonance (NMR) experiments by several thousand‐fold. The hyperpolarization of metabolites and their use as contrast agents in vivo is an emerging diagnostic technique. High degrees of polarization and extended polarization lifetime are necessary requirements for the detection of metabolites in vivo. Here, we present pulsed NMR methods for obtaining hyperpolarized magnetization in two metabolites. We demonstrate that the hydrogenation with para‐hydrogen of perdeuterated vinyl acetate allows us to create hyperpolarized ethyl acetate with close to 60 % 1H two‐spin order. With nearly 100 % efficiency, this order can either be transferred to 1H in‐phase magnetization or 13C magnetization of the carbonyl function. Close to 60 % polarization is experimentally verified for both nuclei. Cleavage of the ethyl acetate precursor in a 20 s reaction yields ethanol with approximately 27 % 1H polarization and acetate with around 20 % 13C polarization. This development will open new opportunities to generate metabolic contrast agents in less than one minute.
We introduce two experiments that allow for the rapid production of hyperpolarized metabolites. More than 50% 13C polarization in 50 mM concentrations is achieved. This can be translated to portable low field NMR devices.
Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000‐fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para‐hydrogen and convert its two‐spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000‐fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para‐hydrogen directly in a high magnetic field without the need for field cycling.
Nuclear magnetic resonance (NMR) is widely applied from analytics to biomedicine although it is an inherently insensitive phenomenon. Overcoming sensitivity challenges is key to further broaden the applicability of NMR and, for example, improve medical diagnostics. Here, we present a rapid strategy to enhance the signals of 13C‐labelled metabolites with para‐hydrogen and, in particular, 13C‐pyruvate, an important molecule for the energy metabolism. We succeeded to obtain an average of 27 % 13C polarization of 1‐13C‐pyruvate in water which allowed us to introduce two applications for studying cellular metabolism. Firstly, we demonstrate that the metabolism of 1‐13C‐pyruvate can serve as a biomarker in cellular models of Parkinson's disease and, secondly, we introduce the opportunity to combine real‐time metabolic analysis with protein structure determination in the same cells. Based on the here presented results, we envision the use of our approach for future biomedical studies to detect diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.