Abstract. We prove that a discrete maximum principle holds for continuous piecewise linear finite element approximations for the Poisson equation with the Dirichlet boundary condition also under a condition of the existence of some obtuse internal angles between faces of terahedra of triangulations of a given space domain. This result represents a weakened form of the acute type condition for the three-dimensional case.
In order to have reliable numerical simulations it is very important to preserve basic qualitative properties of solutions of mathematical models by computed approximations. For scalar second-order elliptic equations, one of such properties is the maximum principle. In our work, we give a short review of the most important results devoted to discrete counterparts of the maximum principle (called discrete maximum principles, DMPs), mainly in the framework of the finite element method, and also present our own recent results on DMPs for a class of second-order nonlinear elliptic problems with mixed boundary conditions.
One of the most important problems in numerical simulations is the preservation of qualitative properties of solutions of the mathematical models by computed approximations. For problems of elliptic type, one of the basic properties is the (continuous) maximum principle. In our work, we present several variants of the maximum principles and their discrete counterparts for (scalar) second-order nonlinear elliptic problems with mixed boundary conditions. The problems considered are numerically solved by the continuous piecewise linear finite element approximations built on simplicial meshes. Sufficient conditions providing the validity of the corresponding discrete maximum principles are presented. Geometrically, they mean that the employed meshes have to be of acute or nonobtuse type, depending of the type of the problem. Finally some examples of real-life problems, where the preservation of maximum principles plays an important role, are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.