The von Willebrand factor (vWF) is a plasma protein that mediates platelet adhesion and leukocyte recruitment to vascular injury sites and carries coagulation factor VIII, a building block of the intrinsic pathway of coagulation. The presence of ultra-large multimers of vWF in the bloodstream is associated with spontaneous thrombosis, whereas its deficiency leads to bleeding. In cardiovascular pathology, the progression of the heart valve disease results in vWF deficiency and cryptogenic gastrointestinal bleeding. The association between higher plasma levels of vWF and thrombotic complications of coronary artery disease was described. Of note, it is not the plasma levels that are crucial for vWF hemostatic activity, but vWF activation, triggered by a rise in shear rates. vWF becomes highly reactive with platelets upon unfolding into a stretched conformation, at shear rates above the critical value (more than 5000 s−1), which might occur at sites of arterial stenosis and injury. The activation of vWF and its counterbalance by ADAMTS-13, the vWF-cleaving protease, might contribute to complications of cardiovascular diseases. In this review, we discuss vWF involvement in complications of cardiovascular diseases and possible diagnostic and treatment approaches.
This review aimed to trace the inflammatory pathway from the NLRP3 inflammasome to monomeric C-reactive protein (mCRP) in atherosclerotic cardiovascular disease. CRP is the final product of the interleukin (IL)-1β/IL-6/CRP axis. Its monomeric form can be produced at sites of local inflammation through the dissociation of pentameric CRP and, to some extent, local synthesis. mCRP has a distinct proinflammatory profile. In vitro and animal-model studies have suggested a role for mCRP in: platelet activation, adhesion, and aggregation; endothelial activation; leukocyte recruitment and polarization; foam-cell formation; and neovascularization. mCRP has been shown to deposit in atherosclerotic plaques and damaged tissues. In recent years, the first published papers have reported the development and application of mCRP assays. Principally, these studies demonstrated the feasibility of measuring mCRP levels. With recent advances in detection techniques and the introduction of first assays, mCRP-level measurement should become more accessible and widely used. To date, anti-inflammatory therapy in atherosclerosis has targeted the NLRP3 inflammasome and upstream links of the IL-1β/IL-6/CRP axis. Large clinical trials have provided sufficient evidence to support this strategy. However, few compounds target CRP. Studies on these agents are limited to animal models or small clinical trials.
C-reactive Protein (CRP) is an acute phase reactant, belonging to the pentraxin family of proteins. Its level rises up to 1000-fold in response to acute inflammation. High sensitivity CRP level is utilized as an independent biomarker of inflammation and cardiovascular disease. The accumulating data suggests that CRP has two distinct forms. It is predominantly produced in the liver in a native pentameric form (nCRP). At sites of local inflammation and tissue injury it may bind to phosphocholine-rich membranes of activated and apoptotic cells and their microparticles, undergoing irreversible dissociation to five monomeric subunits, termed monomeric CRP (mCRP). Through dissociation, CRP deposits into tissues and acquires distinct proinflammatory properties. It activates both classic and alternative complement pathways, binding complement component C1q and factor H. mCRP actively participates in the development of endothelial dysfunction. It activates leukocytes, inducing cytokine release and monocyte recruitment. It may also play a role in the polarization of monocytes and T cells into proinflammatory phenotypes. It may be involved in low-density lipoproteins (LDL) opsonization and uptake by macrophages. mCRP deposits were detected in samples of atherosclerotic lesions from human aorta, carotid, coronary and femoral arteries. mCRP may also induce platelet aggregation and thrombus formation, thus contributing in multiple ways in the development of atherosclerosis and atherothrombosis. In this mini-review, we will provide an insight into the process of conformational rearrangement of nCRP, leading to dissociation, and describe known effects of mCRP. We will provide a rationalization for mCRP involvement in the development of atherosclerosis and atherothrombosis.
The objective of this work was to study the ability of blood cells and their microparticles to transport monomeric and pentameric forms of C-reactive protein (mCRP and pCRP) in the blood of patients with coronary artery disease (CAD). Blood was obtained from 14 patients with CAD 46 ± 13 years old and 8 healthy volunteers 49 ± 13.6 years old. Blood cells and microparticles with mCRP and pCRP on their surface were detected by flow cytometry. Messenger RNA (mRNA) of CRP was extracted from peripheral blood monocytes stimulated with lipopolysaccharide (LPS) and granulocyte-macrophage colony-stimulating factor (GM-CSF). mRNA of CRP in monocytes was detected with PCR. Monocytes were predominantly pCRP-positive (92.9 ± 6.8%). mCRP was present on 22.0 ± 9.6% of monocyte-derived exosomes. mCRP-positive leukocyte-derived microparticle counts were significantly higher (8764 ± 2876/µL) in the blood of patients with CAD than in healthy volunteers (1472 ± 307/µL). LPS and GM-CSF stimulated monocytes expressed CRP mRNA transcripts levels (0.79 ± 0.73-fold), slightly lower relative to unstimulated hepatocytes of the HepG2 cell line (1.0 ± 0.6-fold), but still detectable. The ability of monocytes to transport pCRP in blood flow, and monocyte-derived exosomes to transmit mCRP, may contribute to the maintenance of chronic inflammation in CAD.
The purpose of the study was to assess whether the occurrence of restenosis is associated with CD45þ platelet count and neutrophil to lymphocyte ratio in patients with type 2 diabetes mellitus (DM) after drug-eluting stent (DES) implantation for stable coronary artery disease (CAD). The study comprised 126 patients, including 55 patients with type 2 DM and stable CAD who underwent elective coronary artery stenting with DES and follow-up angiography within 6 to 12 months. Blood samples were collected from each patient on the morning of the coronary angiography procedure. The variables related to in-stent restenosis were selected by logistic regression analysis. The logistic regression analysis showed that 2 inflammatory factors, CD45þ platelet count (odds ratio [OR] ¼ 4.51, 95% confidence interval [CI]: 1.50-13.50, P ¼ .007) and neutrophil to lymphocyte ratio (OR ¼ 3.09, 95% CI: 1.05-9.10, P ¼ .04), were significantly associated with the risk of in-stent restenosis after stenting with DES in patients with stable CAD and type 2 DM. A receiver operator characteristic curve analysis indicated that the area under the curve was 0.83% (0.05%; P < .001), which showed that the logistic model had good predictive accuracy (based on CD45þ platelet count and neutrophil to lymphocyte ratio) for the risk of in-stent restenosis development in DES in patients with CAD and type 2 DM. Two novel biomarkers of restenosis, CD45þ platelet count and neutrophil to lymphocyte ratio, may be effectively used to predict in-stent restenosis after DES implantation in patients with CAD and type 2 DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.