COVID-19 has greatly affected the tourist industry and ways of travel. According to the UNTWO predictions, the number of international tourist arrivals will be slowly growing by the end of 2021. One of the ways to keep tourists safe during travel is to use a personal car or car-sharing service. The sensor-based information collected from the tourist’s smartphone during the trip allows his/her behaviour analysis. For this purpose, we propose to use the Internet of Things with ambient intelligence technologies, which allows information processing using the surrounding devices. The paper describes a solution to the car tourist trajectory prediction, which has been the demanding subject of different research studies in recent years. We present an approach based on the usage of the bidirectional LSTM neural network model. We show the reference model of the tourist support system for car-based attraction-visiting trips. The sensor data acquisition process and the bidirectional LSTM model construction, training and evaluation are demonstrated. We propose a system architecture that uses the tourist’s smartphone for data acquisition as well as more powerful surrounding devices for information processing. The obtained results can be used for tourist trip behaviour analysis.
The tourism industry has been rapidly growing over the last years and IT technologies have had a great affect on tourists as well. Tourist behaviour analysis has been the subject of different research studies in recent years. This paper presents the digital pattern of life concept which simplifies the tourist behaviour models’ construction and usage. The digital pattern of life defines the general concepts of tourist behaviour, connects the tourist and the digital world and allows us to track behaviour changes over time. A literature review of the current state of the research in selected fields is performed for identifying the existing problems. The case studies of behaviour analysis based on classification, clustering and time series events behaviour models are shown. An ontological approach and artificial neural networks are used during behaviour model construction, training and evaluation. The gathered results can be used by smart tourism service developers and business stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.