Neural networks (NNs) are steering a new generation of artificial intelligence (AI) applications at the micro-edge. Examples include wireless sensors, wearables and cybernetic systems that collect data and process them to support real-world decisions and controls. For energy autonomy, these applications are typically powered by energy harvesters. As harvesters and other power sources which provide energy autonomy inevitably have power variations, the circuits need to robustly operate over a dynamic power envelope. In other words, the NN hardware needs to be able to function correctly under unpredictable and variable supply voltages. In this paper, we propose a novel NN design approach using the principle of pulse width modulation (PWM). PWM signals represent information with their duty cycle values which may be made independent of the voltages and frequencies of the carrier signals. We design a PWM-based perceptron which can serve as the fundamental building block for NNs, by using an entirely new method of realizing arithmetic in the PWM domain. We analyse the proposed approach building from a 3 × 3 perceptron circuit to a complex multi-layer NN. Using handwritten character recognition as an exemplar of AI applications, we demonstrate the power elasticity, resilience and efficiency of the proposed NN design in the presence of functional and parametric variations including large voltage variations in the power supply.This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.
Neural networks are exerting burgeoning influence in emerging artificial intelligence applications at the micro-edge, such as sensing systems and image processing. As many of these systems are typically self-powered, their circuits are expected to be resilient and efficient in the presence of continuous power variations caused by the harvesters. In this paper, we propose a novel mixed-signal (i.e. analogue/digital) approach of designing a power-elastic perceptron using the principle of pulse width modulation (PWM). Fundamental to the design are a number of parallel inverters that transcode the input-weight pairs based on the principle of PWM duty cycle. Since PWM-based inverters are typically agnostic to amplitude and frequency variations, the perceptron shows a high degree of power elasticity and robustness under these variations. We show extensive design analysis in Cadence Analog Design Environment tool using a 3 x 3 perceptron circuit as a case study to demonstrate the resilience in the presence of parameric variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.