Drilling wells is one of the primary methods used for mineral exploration. Scientific studies have aimed at improving the technical and economic aspects of drilling because of the current competitive economic conditions. Note that the primary topic of these studies has been developing new effective rock-cutting tools. To design a new rock-cutting tool, a thorough, reliable, and accurate study of the processes that occur during drilling is necessary. During drilling, mechanical, hydraulic, thermal, and chemical phenomena, which are interdependent and affect the performance of a drilling tool, simultaneously occur; therefore, a systematic, integrated approach is required for studying drilling processes. Field-based and laboratory experiments are quite tedious to perform and require high material costs, and it is often not possible to separately evaluate small elements of the drilling model. Therefore, computer simulation is an important research tool that enables accurate and reliable visualization of even small parts of the model. The aim. The aim of this study is to examine the potential for computer simulation of the processes that occur during drilling. Objective. In this study, we evaluated the simulation features of various software products, such as KOMPAS-3D, ANSYS, Delphi, and LabVIEW, for their utility in studying the processes that occur during drilling. The possibility of computer simulation for studying drilling processes, including its advantages and disadvantages, are demonstrated. The results are obtained from a model that simulates a rock cutting tool. The main uses of the rock cutting tool are outlined, and the drilling simulation development is planned. Choice of research method. The study of the capabilities of existing modern software products, for use in drilling process research, is carried out by an analytical review method.
Drilling wells is one of the primary methods used for mineral exploration. Scientific studies have aimed at improving the technical and economic aspects of drilling because of the current competitive economic conditions. Note that the primary topic of these studies has been developing new effective rock-cutting tools. To design a new rock-cutting tool, a thorough, reliable, and accurate study of the processes that occur during drilling is necessary. During drilling, mechanical, hydraulic, thermal, and chemical phenomena, which are interdependent and affect the performance of a drilling tool, simultaneously occur; therefore, a systematic, integrated approach is required for studying drilling processes. Field-based and laboratory experiments are quite tedious to perform and require high material costs, and it is often not possible to separately evaluate small elements of the drilling model. Therefore, computer simulation is an important research tool that enables accurate and reliable visualization of even small parts of the model. The aim. The aim of this study is to examine the potential for computer simulation of the processes that occur during drilling. Objective. In this study, we evaluated the simulation features of various software products, such as KOMPAS-3D, ANSYS, Delphi, and LabVIEW, for their utility in studying the processes that occur during drilling. The possibility of computer simulation for studying drilling processes, including its advantages and disadvantages, are demonstrated. The results are obtained from a model that simulates a rock cutting tool. The main uses of the rock cutting tool are outlined, and the drilling simulation development is planned. Choice of research method. The study of the capabilities of existing modern software products, for use in drilling process research, is carried out by an analytical review method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.