Existing automated machine learning solutions and intelligent discovery assistants are popular tools that facilitate the end-user with the design of data science (DS) pipelines. However, they yield limited applicability for a wide range of real-world use cases and application domains due to (a) the limited support of DS tasks; (b) a small, static set of available operators; and (c) restriction to evaluation processes with quantifiable loss functions. We demonstrate DORIAN, a human-in-the-loop approach for the
assisted design of data science pipelines
that supports a large and growing set of DS tasks, operators, and arbitrary user-defined evaluation processes. Based on the user query, i.e., a dataset and a DS task, DORIAN computes a ranked list of candidate pipelines that the end-user can choose from, alter, execute and evaluate. It stores executed pipelines in an experiment database and utilizes similarity-based search to identify relevant previously-run pipelines from the experiment database. DORIAN also takes user interaction into account to improve suggestions over time. We show how users can interact with DORIAN to create and compare DS pipelines on various real-world DS tasks without the need for writing any code.
This poster presents an ongoing study on affective humanrobot interaction. In our previous research, touch type is shown to be informative for communicated emotion. Here, a soft matrix array sensor is used to capture the tactile interaction between human and robot and 6 machine learning methods including CNN, RNN and C3D are implemented to classify different touch types, constituting a pre-stage to recognizing emotional tactile interaction. Results show an average recognition rate of 95% by C3D for classified touch types, which provide stable classification results for developing social touch technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.