In the last few years, a great number of methods for identifying the load model parameters have been proposed. This article discusses the use of statistical approach to estimate the substation equivalent load model parameters for supplying to oil-producing industrial region. The disadvantages of existing statistical approach are the low accuracy obtained for the parameter estimates, especially when using samples size is small. To eliminate this deficiency, the current measurement data archive from SCADA system of electrical parameters for 15 months was collected. For the purpose of verifying the obtained results of statistical processing of SCADA data, a full-scale experiment was carried out in relation to the studied substation. The article describes the statistical method used to process the current SCADA measurement data, the results of archived statistical processing and experimental SCADA data. The electrical load models' parameters received from the experimental studies results are of practical importance.
Current measurements from electromagnetic current transformers are essential for the construction of secondary circuit systems, including for protection systems. Magnetic core of these transformers are at risk of saturation, as a result of which maloperation of protection algorithms can possibly occur. The paper considers methods for recovering a current signal in the saturation mode of current transformers. The advantages and disadvantages of methods for detecting the occurrence of current transformers core saturation are described. A comparative analysis of mathematical methods for recovering a current signal is given, their approbation was carried out, and the most promising of them was revealed. The stability and sensitivity of recovery methods were tested by adding white noise to the measured signal and taking into account the initial flux density (remanent magnetization) in the current transformers core. Their comparison is given on the basis of angular, magnitude, and total errors at a given simulation interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.