The canopy height model (CHM) is a representation of the height of the top of vegetation from the surrounding ground level. It is crucial for the extraction of various forest characteristics, for instance, timber stock estimations and forest growth measurements. There are different ways of obtaining the vegetation height, such as through ground-based observations or the interpretation of remote sensing images. The severe downside of field measurement is its cost and acquisition difficulty. Therefore, utilizing remote sensing data is, in many cases, preferable. The enormous advances in computer vision during the previous decades have provided various methods of satellite imagery analysis. In this work, we developed the canopy height evaluation workflow using only RGB and NIR (near-infrared) bands of a very high spatial resolution (investigated on WorldView-2 satellite bands). Leveraging typical data from airplane-based LiDAR (Light Detection and Ranging), we trained a deep neural network to predict the vegetation height. The provided approach is less expensive than the commonly used drone measurements, and the predictions have a higher spatial resolution (less than 5 m) than the vast majority of studies using satellite data (usually more than 30 m). The experiments, which were conducted in Russian boreal forests, demonstrated a strong correlation between the prediction and LiDAR-derived measurements. Moreover, we tested the generated CHM as a supplementary feature in the species classification task. Among different input data combinations and training approaches, we achieved the mean absolute error equal to 2.4 m using U-Net with Inception-ResNet-v2 encoder, high-resolution RGB image, near-infrared band, and ArcticDEM. The obtained results show promising opportunities for advanced forestry analysis and management. We also developed the easyto-use open-access solution for solving these tasks based on the approaches discussed in the study cloud-free composite orthophotomap provided by Mapbox via tile-based map service.
Consultation prioritization is fundamental in optimal healthcare management and its performance can be helped by artificial intelligence (AI)-dedicated software and by digital medicine in general. The need for remote consultation has been demonstrated not only in the pandemic-induced lock-down but also in rurality conditions for which access to health centers is constantly limited. The term “AI” indicates the use of a computer to simulate human intellectual behavior with minimal human intervention. AI is based on a “machine learning” process or on an artificial neural network. AI provides accurate diagnostic algorithms and personalized treatments in many fields, including oncology, ophthalmology, traumatology, and dermatology. AI can help vascular specialists in diagnostics of peripheral artery disease, cerebrovascular disease, and deep vein thrombosis by analyzing contrast-enhanced magnetic resonance imaging or ultrasound data and in diagnostics of pulmonary embolism on multi-slice computed angiograms. Automatic methods based on AI may be applied to detect the presence and determine the clinical class of chronic venous disease. Nevertheless, data on using AI in this field are still scarce. In this narrative review, the authors discuss available data on AI implementation in arterial and venous disease diagnostics and care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.