Au nanocrystals (NCs) with different crystalline structures and related morphologies are unselectively synthesized using an organometallic route. The acoustic vibrations of these NCs are studied by plasmon mediated low-frequency Raman scattering (LFRS). A splitting of the quadrupolar vibration mode is pointed out in the LFRS spectrum. Comparison of the measured frequencies with calculations and careful examination of the NCs morphologies by transmission electron microscopy ascertain this splitting as being an effect of crystallinity. The excitation dependence of the LFRS spectra is interpreted by the shape-selection of the NCs via plasmon-vibration coupling. These results give new insights into the crystallinity influence on both the vibrations of the NCs and their coupling with plasmons and demonstrate the relevance of elastic anisotropy in monodomain NCs.
Spontaneous separation of single from polycrystalline 5 nm gold nanocrystals (NCs) is observed in colloidal solution. This segregation takes place upon self-assembling of single crystalline NCs at the air-solvent interface and in precipitated superlattices. Polycrystalline NCs are observed to remain in the suspension. Transmission electron microscopy analysis of the size distribution of NCs issued from the different populations indicates that the NC size does not change from each other, excluding therefore any size segregation in this process. Using both low-frequency Raman scattering and X-ray diffraction provides reliable characterization of nanocrystallinity for each population of NCs, thus confirming the crystallinity segregation. The single crystalline NCs are found by electron diffraction to self-assemble into close-packed superlattices with long-range translational and orientational ordering, while polycrystalline NCs behave like spheres with no preferential orientation. The face-to-face orientational ordering, which is only observed for single crystalline NCs, supports the relevance of the specific crystallinity-related morphologies of these NCs in their better ability to self-assemble. Exploiting this spontaneous segregation would open up a simple alternative to other demanding routes for controlling crystallinity of nanocrystals and optimizing their properties for potential applications.
The purpose of this work is to calculate the vibrational modes of an elastically anisotropic sphere embedded in an isotropic matrix. This has important application to understanding the spectra of low-frequency Raman scattering from nanoparticles embedded in a glass matrix. First some low frequency vibrational modes of a free cubically elastic sphere are found to be nearly independent of one combination of elastic constants. This is then exploited to obtain an isotropic approximation for these modes which enables to take into account the surrounding isotropic matrix. This method is then used to quantatively explain recent spectra of gold and copper nanocrystals in glasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.