We find that nearly monodisperse copper oxide nanoparticles prepared via the thermal decomposition of a Cu(I) precursor exhibit exceptional activity toward CO oxidation in CO/O 2 /N 2 mixtures. Greater than 99.5% conversion of CO to CO 2 could be achieved at temperatures less than 250°C for over 12 h. In addition, the phase diagram and pathway for CO oxidation on Cu 2 O (100) is computed by ab initio methods and found to be in qualitative agreement with the experimental findings.Nanoparticles offer a larger surface-to-volume ratio and a higher concentration of partially coordinated surface sites than the corresponding bulk materials. The unique properties of nanoparticles are due to a strong interplay between elastic, geometric, and electronic parameters, as well as the effects of interactions with the support. The result of these features is often improved physical and chemical properties compared to the bulk material. It is for these reasons that heterogeneous catalysis at nanoparticle surfaces is currently under intense investigation in the catalysis community at large. 1,2 Conventional supported catalysts are generally produced by impregnation of a support medium with the desired metal ions followed by thermal treatments that result in small and dispersed active catalytic sites. 3,4 Many traditional catalysts based on the impregnation method 5,6 rely on the noble metals, in particular platinum, as the source for high activity. Such metals are recognized as a scarce resource as well as a limiting step in the development of viable energy alternatives to petroleum. Automotive exhaust catalysts (the three way catalyst) and fuel cells are examples of this tenet. 5,6 Any new system that overcomes these limitations will be invaluable.There are several important processes in heterogeneous catalysis where removal of carbon monoxide is either desired or absolutely necessary, such as in the postprocessing of Syngas 7 to produce hydrogen as an energy source for use in fuel cells. 8,9 A byproduct of this reaction is CO; however, trace amounts of CO (>10 ppm) can poison a fuel cell electrode, drastically reducing its efficiency. [10][11][12] The CuCu 2 O-CuO system has been known to facilitate oxidation reactions in the bulk, suggesting it has potential as a costeffective substitute for noble metals in various catalytic systems. [13][14][15] Here we describe a cheap, effective method of using copper oxide nanoparticles loaded onto silica gel as an exceptional catalyst toward CO oxidation at relatively low temperatures. Over sustained periods of time, conversions of 99.5% of CO to CO 2 are routinely observed and the catalyst structure is retained during the reaction. For example, during a 50 h period with the same ∼10 mg sample of copper oxide nanoparticles, over 30 L of CO is converted to CO 2 with an average conversion of 98 ( 1%.With recent developments in nanoparticle synthesis leading to the ability to control size, reproducibility, and structural complexity, it becomes urgent to define specific target structu...
Step edges and low-symmetry faces of metal crystals can restrict the diffusive motion of adsorbates, yet they offer little flexibility with regards to the location and/or direction of the guided motion. We show inherently unidirectional motion of an organic molecule on a high-symmetry thermodynamic-equilibrium metal surface [Cu(111)]. Sequential placement of the substrate linkers of 9,10-dithioanthracene prevents it from rotating or veering off course. A combination of low temperature scanning tunneling microscopy and density functional theory simulations provide atomistic insight.
We report here results of our density functional theory based computational studies of the electronic structure of the Pd-Co alloy electrocatalysts and energetics of the oxygen reduction reaction (ORR) on their surfaces. The calculations have been performed for the (111) surfaces of pure Pd, Pd(0.75)Co(0.25) and Pd(0.5)Co(0.5) alloys, as well as of the surface segregated Pd/Pd(0.75)Co(0.25) alloy. We find the hybridization of dPd and dCo electronic states to be the main factor controlling the electrocatalytic properties of Pd/Pd(0.75)Co(0.25). Namely the dPd-dCo hybridization causes low energy shift of the surface Pd d-band with respect to that for Pd(111). This shift weakens chemical bonds between the ORR intermediates and the Pd/Pd(0.75)Co(0.25) surface, which is favorable for the reaction. Non-segregated Pd(0.75)Co(0.25) and Pd(0.5)Co(0.5) surfaces are found to be too reactive for ORR due to bonding of the intermediates to the surface Co atoms. Analysis of the ORR free energy diagrams, built for the Pd and Pd/Pd(0.75)Co(0.25), shows that the co-adsorption of the ORR intermediates and water changes the ORR energetics significantly and makes ORR more favorable. We find the onset ORR potential estimated for the configurations with the O-OH and OH-OH co-adsorption to be in very good agreement with experiment. The relevance of this finding to the real reaction environment is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.