We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis in the right-hand side. The input of hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the discontinuity of hysteresis. These conditions are formulated in terms of geometry of manifolds defining hysteresis thresholds and the graph of initial data.
We show that Lipschitz shadowing property of a diffeomorphism is equivalent to structural stability. As a corollary, we show that an expansive diffeomorphism having Lipschitz shadowing property is Anosov.
a b s t r a c tThe paper deals with reaction-diffusion equations involving a hysteretic discontinuity in the source term, which is defined at each spatial point. Such problems describe biological processes and chemical reactions in which diffusive and nondiffusive substances interact according to hysteresis law. Under the assumption that the initial data are spatially transverse, we prove a theorem on the uniqueness of solutions. The theorem covers the case of non-Lipschitz hysteresis branches arising in the theory of slow-fast systems.
We introduce a notion of shadowing property for actions of finitely generated groups and study its basic properties. We formulate and prove a shadowing lemma for actions of nilpotent groups. We construct an example of a faithful linear action of a solvable Baumslag-Solitar group and show that the shadowing property depends on quantitative characteristics of hyperbolicity. Finally we show that any linear action of a non-abelian free group does not have the shadowing property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.