Контроль профиля приемистости и оптимизация заводнения горячей водой для горизонтальной скважины 2Г на месторождении тяжелой нефти Русское ЗАО «Роспан» с использованием распределенного измерения температуры. Аннотация «Роспан Итернешнл», дочернее предприятие компании ТНК-ВР, в настоящее время разрабатывает месторождение тяжелой нефти Русское, расположенное в Ямало-Ненецком автономном округе России. Разработка данного месторождения началась с нескольких пилотных кустов горизонтальных скважин, освоенных с применением противопесочных фильтров по причине наличия пласта, представленного рыхлым песчаником. Для повышения нефтеотдачи применили метод закачки горячей воды через горизонтальные нагнетательные скважины, однако, из-за высокой неоднородности коллектора профиль нагнетания был неравномерным, что привело к преждевременному прорыву воды и неэффективному заводнению, в результате чего запасы нефти, не вытесненные водой, оставались в пласте. Отдаленность и неблагоприятные условия окружающей среды ограничивали применение традиционных приборов для каротажа в эксплуатационных скважинах (PLT) для контроля профиля нагнетания. По этой причине в компании «Роспан Интернешнл» было принято решение установить систему измерения температуры с помощью распределенного волоконно-оптического датчика температуры (DTS) в линии управления 1/4 дюйма с жестким креплением, подвешенной ниже нагнетательной колонны НКТ вдоль зоны коллектора после заканчивания для определения профиля нагнетания и оптимизации заводнения.В настоящем документе описывается технология заканчивания, применяемая для установки волоконнооптической системы в горизонтальной нагнетательной скважине, и представлены полученные данные и результаты. Для анализа скорости движения закачиваемой горячей воды с последующим периодом отстоя и охлаждением по данным термометрии DTS применялись числовые температурные модели для расчета профиля приемистости. Сравнение профиля притока, рассчитанного по данным DTS и PLT, оправдало установку волоконно-оптической системы для контроля расхода закачки во времени и оптимизации заводнения на Русском месторождении.
This paper reviews the sand control practices used in an offshore Malaysia field, including execution of the longest single-trip multizone cased-hole gravel pack in Malaysia, the challenges faced, and the lessons learned. PETRONAS is currently developing an offshore field in Malaysia with wells designed to obtain medium-to-high production rates and be completed as gas-lifted dual-string producers. The lower sandface completion design was to gravel pack the lower and middle zones on a single run and selectively produce through the long string. The upper zone was then to be gravel packed and produce through the short string. Because of the long perforated intervals and exceptionally long distance between the producing zones, as well as different pressure profiles of the layers, shunt tube technique was identified as being the best practical method to overcome the operational challenges. The target reservoir is a laminated and multilayer sandstone formation. The lower and middle zones were gravel packed simultaneously with gross-producing intervals to 950 ft (the shaly section between the zones up to 600 ft). The upper zone was gravel packed separately with a gross perforated interval length to 775 ft. Due to the different pressures in the multiple zones, loss and crossflow control was a design requirement. The project imposed a number of challenges, including gravel packing extremely long intervals while aiming to achieve suitable perforation packing efficiency in unconsolidated and soft sandstone formations and also providing the possibility of selective production during the life of the wells. The proposed solution to overcome these concerns consisted of combining shunt tube technique with a three-way sub-concentric completion system. Five wells using this design have successfully been completed in this project with sand-free production rates exceeding expectations. The proposed solutions and the lessons learned in this project could change the sandface completion practices for multizone and long intervals in the offshore Malaysia fields. The techniques used in this project resulted in considerable rig-time savings, lower skin, and better productivity through improved perforation packing efficiency compare to the conventional methods.
Reserves of Achimov formation of Urengoyskoe gas field is approximately 3 trillion cubic meters of gas and condensate. (Total reserves of Urengoy gas field 10 trillion cubic meters). About 83 % of Achimov reserves stored in two main reservoirs Ach3-4 and Ach5. Operator Company of the gas field has hard objectives to drill sub horizontal well that will cross both mentioned formations at angle of 80-90 degrees.
Rospan International, a subsidiary of TNK-BP, is developing its Russkoe heavy-oil field located in the Yamalo-Nenets Autonomous District of Russia. Development of this field commenced with several pilot pads of horizontal wells completed with stand-alone sand-screens because of the unconsolidated sandstone formation. To increase oil recovery hot water flooding through horizontal injectors was employed, however because of high reservoir heterogeneity the injection profile was not uniform and this led to early water breakthrough and an inefficient waterflood, leaving unswept oil reserves. The remote location and harsh environment limited the use of the conventional production logging tools (PLT) for monitoring the injection profile. Because of this, Rospan International chose to install fiber-optic distributed temperature sensing (DTS) system in a ¼-inch control line attached to a stinger hung below the injection tubing along the reservoir section, post-completion, to determine the injection profile and optimize water flooding. This paper is describes the completion technology used to install the fiber in the horizontal injector and shows the data and results obtained. Numerical thermal models of the near-wellbore environment were used to analyze the shut-in cool-back and hot water velocity injection DTS data to calculate the injectivity profile. Comparison of the inflow profile calculated from the DTS and PLT data proved the value of the installed optic fiber system for injection change monitoring over time and water flooding optimization for Russkoe oilfield.
E&P operating companies starting develop deeper production intervals with poorer formation properties due to depletion of the upper productive layers. This is a global trend worldwide. In connection with this it is very critical to optimize well construction and at the same time increase productivity of wells.Purpose to this work was to increase the productivity of six deviated gas condensate wells drilled for the achimov tight-gas deposits of the Urengoy gas condensate field. Integrated approach to well construction, completion and two-stage stimulation as well as the other technologies were used In order to achieve high production objectives.Because of the complex geological conditions of the achimov formation associated with the presence of abnormal pressure, narrow driling window, construction and completion of wells was associated with the risk of complications and emergencies.The paper describes an integrated project approach to planning, construction and the stimulation of the six wells in low permeable gas-condensate formation.The following technologies had been used during the wells construction: improved design of well completion (retrievable packer, the use of "floating" of the sealing arrangement, the use of the landing nipple below the packer to be able to cut off the producing formation, the use of premium gastight connections). Expanded set of logging (standard logging, NMR (Nuclear Magnetic Resonance), crossdipole acoustic measurements), a special thee component cement slurry, fracturing technology with high conductive channels, coil tubing service and drilling pipes make up.Due to integrated approach and new technology involved in well construction and completion of the six-deviated wells, construction time reduced and wells productivity increased by 30%. Urengoyskoe gas condensate fieldUrengoyskoe gas condensate field is supergiant gas field, third in the world by reserves, which is achieving 10 trillion of cubic meters (10 13 m 3 ). This field located in Yamalo-Nenetskiy area of Tyumen region of Russia, slightly to the south from polar Ural. Please see Fig. 1 Urengoyskoe gas field started developing at 1966 and it is more than 45 years in production. The length from south to north is 220 km and area of gas field 6 000 square kilometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.