The only one example has been known of magnetic geodesic flow on the 2-torus which has a polynomial in momenta integral independent of the Hamiltonian. In this example the integral is linear in momenta and corresponds to a one parametric group preserving the Lagrangian function of the magnetic flow. In this paper the problem of integrability on one energy level is considered. This problem can be reduced to a remarkable Semihamiltonian system of quasi-linear PDEs and to the question of existence of smooth periodic solutions for this system. Our main result states that the pair of Liouville metric with zero magnetic field on the 2-torus can be analytically deformed to a Riemannian metric with small magnetic field so that the magnetic geodesic flow on an energy level is integrable by means of a quadratic in momenta integral. Thus our construction gives a new example of smooth periodic solution to the Semi-hamiltonian (Rich) quasilinear system of PDEs.
We study Riemannian metrics on 2-surfaces with integrable geodesic flows such that an additional first integral is high-degree polynomial in momenta. This problem reduces to searching for solutions to certain quasi-linear systems of PDEs which turn out to be semi-Hamiltonian. We construct plenty of local explicit and implicit integrable examples with polynomial first integrals of degrees 3, 4, 5. Our construction is essentially based on applying the generalized hodograph method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.