We employ microsecond atomic-scale molecular dynamics simulations to get insight into the structural and thermal properties of heat-resistant bulk polyimides. As electrostatic interactions are essential for the polyimides considered, we propose a two-step equilibration protocol that includes long (microsecond-scale) MD simulations of polymer melt with partial atomic charges switched off, followed by relatively short runs (100 ns) of the polymer system with full electrostatics. We demonstrate that macroscopic characteristics of a polyimide sample (such as the glass transition temperature and density) are not particularly sensitive to the degree of equilibration. However, great caution should be paid when local structural characteristics are considered: proper equilibration of the local polymer structure (monitored through the radius of gyration and the end-to-end distance of individual chains) is found to require simulations on a microsecond time scale. Finally, we found a dramatic impact of electrostatic interactions on the properties of the bulk polyimides considered: when intra-and intermolecular dipole−dipole interactions come into play we witness compaction of individual polymer coils and eventually an increase in the glass transition temperature and polymer density.
Polyamidoamine (PAMAM) dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nano-sized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer's terminal beads positively charged. Solvent molecules as well as counterions were explicitly included as interacting beads. We find that the size of the charged dendrimer depends non-monotonically on the strength of electrostatic interactions demonstrating a maximum when the Bjerrum length equals the diameter of a bead. Many other structural and dynamic characteristics of charged dendrimers are also found to follow this pattern. We address such a behavior to the interplay between repulsive interactions of the charged terminal beads and their attractive interactions with oppositely charged counterions. The former favors swelling at small Bjerrum lengths and the latter promotes counterion condensation. Thus, counterions can have a dramatic effect on the structure and dynamics of charged dendrimers and, under certain conditions, cannot be treated implicitly.
Polyimide-based composite materials with a single-walled carbon nanotube as filler were studied by means of extensive fully-atomistic molecular-dynamics simulations. Polyimides (PI) were considered based on 1,3-bis-(3 0 ,4-dicarboxyphenoxy)-benzene (dianhydride R) and various types of diamines: 4,4 0 -bis-(4 00aminophenoxy)-diphenylsulfone (diamine BAPS) and 4,4 0 -bis-(4 00 -aminophenoxy)-diphenyl (diamine BAPB). The influence of the chemical structure of the polyimides on the microstructure of the composite matrix near the filler surface and away from it was investigated. The formation of subsurface layers close to the nanotube surface was found for all composites considered. In the case of R-BAPBbased composites, the formation of an organized structure was shown that could be the initial stage of the matrix crystallization process observed experimentally. Similar structural features were not observed in the R-BAPS composites. Carbon nanotubes induce the elongation of R-BAPB chains in composites whereas R-BAPS chains become more compact similar to what is observed for EXTEM™ polyimide. It was shown that electrostatic interactions do not influence the microstructure of composites but slow down significantly the dynamics of PI chains in composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.