An original voltammetric sensor (Au-gr/CVE) based on a carbon veil (CV) and phytosynthesized gold nanoparticles (Au-gr) was developed for ascorbic acid (AA) determination. Extract from strawberry leaves was used as source of antioxidants (reducers) for Au-gr phytosynthesis. The sensor was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and electrochemical methods. Optimal parameters of AA determination were chosen. The sensor exhibits a linear response to AA in a wide concentration range (1 μM–5.75 mM) and a limit of detection of 0.05 μM. The developed sensor demonstrated a high intra-day repeatability of 1 μM AA response (RSD = 1.4%) and its stability during six weeks, selectivity of AA determination toward glucose, sucrose, fructose, citric, tartaric and malic acids. The proposed sensor based on Au-gr provides a higher sensitivity and a lower limit of AA detection in comparison with the sensor based on gold nanoparticles synthesized by the Turkevich method. The sensor was successfully applied for the determination of AA content in fruit juices without samples preparation. The recovery of 99%–111% and RSD no more than 6.8% confirm the good reproducibility of the juice analysis results. A good agreement with the potentiometric titration data was obtained. A correlation (r = 0.9867) between the results of AA determination obtained on the developed sensor and integral antioxidant activity of fruit juices was observed.
The paper describes the development of a carbon veil-based electrode (CVE) for determining uric acid (UA) in saliva. The electrode was manufactured by lamination technology, electrochemically activated and used as a highly sensitive voltammetric sensor (CVEact). Potentiostatic polarization of the electrode at 2.0 V in H2SO4 solution resulted in a higher number of oxygen and nitrogen-containing groups on the electrode surface; lower charge transfer resistance; a 1.5 times increase in the effective surface area and a decrease in the UA oxidation potential by over 0.4 V, compared with the non-activated CVE, which was confirmed by energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, chronoamperometry and linear sweep voltammetry. The developed sensor is characterized by a low detection limit of 0.05 µM and a wide linear range (0.09–700 µM). The results suggest that the sensor has perspective applications for quick determination of UA in artificial and human saliva. RSD does not exceed 3.9%, and recovery is 96–105%. UA makes a significant contribution to the antioxidant activity (AOA) of saliva (≈60%). In addition to its high analytical characteristics, the important advantages of the proposed CVEact are the simple, scalable, and cost-effective manufacturing technology and the absence of additional complex and time-consuming modification operations.
A film carbon veil-based electrode (FCVE) modified with non-ionic surfactant Triton X-100 (TrX100) has been developed for nitrite determination. A new simple and producible technique of hot lamination (heat sealing) has been used for the FCVE manufacturing. The paper presents the findings of investigating the FCVE and the TrX100/FCVE by using voltammetry, chronoamperometry, and scanning electron microscopy. Modification of the electrode with TrX100 improves the hydrophilic property of its surface, which results in a larger electrode active area and higher sensitivity. Optimal conditions for nitrite determination with the use of the TrX100/FCVE have been identified. The linear range (LR) and the limit of detection (LOD) are 0.1–100 μM and 0.01 μM, respectively. The relative standard deviation (RSD) does not exceed 2.3%. High selectivity of the sensor ensures its successful application for the analysis of real samples (sausage products and natural water). The obtained results accord well with the results of the standard spectrophotometric method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.