Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
SummaryRNA silencing in transgenic and virus-infected plants involves a mobile silencing signal that can move cell-tocell and systemically through the plant. It is thought that this signal can influence long-distance movement of viruses because protein suppressors of silencing encoded in viral genomes are required for long-distance virus movement. However, until now, it was not known whether the mobile signal could also influence short-range virus movement between cells. Here, through random mutation analysis of the Potato Potexvirus X (PVX) silencing suppressor P25, we provide evidence that it does. All mutants that were defective for silencing suppression were also non-functional in viral cell-to-cell movement. However, we identified mutant P25 proteins that were functional as silencing suppressors but not as movement proteins and we conclude that suppression of silencing is not sufficient to allow virus movement between cells: there must be a second P25 function that is independent of silencing but also required for cell-to-cell movement. Consistent with this hypothesis, we identified two classes of suppressor-inactive P25 mutants. One class of these mutants is proposed to be functional for the accessory function because their failure to support PVX movement could be complemented by heterologous suppressors of silencing. The second class of P25 mutants is considered defective for both the suppressor and second functions because the heterologous silencing suppressors did not restore virus movement. It is possible, based on analyses of short interfering RNA accumulation, that P25 suppresses silencing by interfering with either assembly or function of the effector complexes of RNA silencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.