Bitcoin relies on a peer-to-peer overlay network to broadcast transactions and blocks. From the viewpoint of network measurement, we would like to observe this topology so we can characterize its performance, fairness and robustness. However, this is difficult because Bitcoin is deliberately designed to hide its topology from onlookers. Knowledge of the topology is not in itself a vulnerability, although it could conceivably help an attacker performing targeted eclipse attacks or to deanonymize transaction senders. In this paper we present TxProbe, a novel technique for reconstructing the Bitcoin network topology. TxProbe makes use of peculiarities in how Bitcoin processes out of order, or "orphaned" transactions. We conducted experiments on Bitcoin testnet that suggest our technique reconstructs topology with precision and recall surpassing 90%. We also used TxProbe to take a snapshot of the Bitcoin testnet in just a few hours. TxProbe may be useful for future measurement campaigns of Bitcoin or other cryptocurrency networks.
On-line commercial transactions involve an inherent mistrust between participant parties since, sometimes, no previous relation exists between them. Such mistrust may be a deadlock point in a trade transaction where the buyer does not want to perform the payment until the seller sends the good and the seller does not want to do so until the buyer pays for the purchase. In this paper we present a fair protocol for data trading where the commercial deal, in terms of delivering the data and performing the payment, is atomic since the seller cannot redeem the payment unless the buyer obtains the data and the buyer cannot obtain the data without performing the payment. The protocol is based on Bitcoin scripting language and the fairness of the protocol can be probabilistically enforced.
Bitcoin relies on the Unspent Transaction Outputs (UTXO) set to efficiently verify new generated transactions. Every unspent output, no matter its type, age, value or length is stored in every full node. In this paper we introduce a tool to study and analyze the UTXO set, along with a detailed description of the set format and functionality. Our analysis includes a general view of the set and quantifies the difference between the two existing formats up to the date. We also provide an accurate analysis of the volume of dust and unprofitable outputs included in the set, the distribution of the block height in which the outputs where included, and the use of non-standard outputs.
P2P networks are the mechanism used by cryptocurrencies to disseminate system information while keeping the whole system as much decentralized as possible. Cryptocurrency P2P networks have new characteristics that propose new challenges and avoid some problems of existing P2P networks. By characterizing the most relevant cryptocurrency network, Bitcoin, we provide details on different properties of cryptocurrency networks and their similarities and differences with standard P2P network paradigms. Our study allows us to conclude that cryptocurrency networks present a new paradigm of P2P networks due to the mechanisms they use to achieve high resilience and security. With this new paradigm, interesting research lines can be further developed, both in the focused field of P2P cryptocurrency networks and also when such networks are combined with other distributed scenarios.
Zero-confirmation transactions, i.e., transactions that have been broadcast but are still pending to be included in the blockchain, have gained attention in order to enable fast payments in Bitcoin, shortening the time for performing payments. Fast payments are desirable in certain scenarios, for instance, when buying in vending machines, fast food restaurants, or withdrawing from an ATM. Despite being fast propagated through the network, zero-confirmation transactions are not protected against double-spending attacks, since the double spending protection Bitcoin offers relays on the blockchain and, by definition, such transactions are not yet included in it. In this paper, we propose a double-spending prevention mechanism for Bitcoin zero-confirmation transactions. Our proposal is based on exploiting the flexibility of the Bitcoin scripting language together with a well known vulnerability of the ECDSA signature scheme to discourage attackers from performing such an attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.