This paper presents a novel method for introducing time into discrete and continuous spatial representations used in mobile robotics, by modelling long-term, pseudoperiodic variations caused by human activities. Unlike previous approaches, the proposed method does not treat time and space separately, and its continuous nature respects both the temporal and spatial continuity of the modeled phenomena. The method extends the given spatial model with a set of wrapped dimensions that represent the periodicities of observed changes. By performing clustering over this extended representation, we obtain a model that allows us to predict future states of both discrete and continuous spatial representations. We apply the proposed algorithm to several long-term datasets and show that the method enables a robot to predict future states of representations with different dimensions. The experiments further show that the method achieves more accurate predictions than the previous state of the art.
We present a human-centric spatio-temporal model for service robots operating in densely populated environments for long time periods. The method integrates observations of pedestrians performed by a mobile robot at different locations and times into a memory efficient model, that represents the spatial layout of natural pedestrian flows and how they change over time. To represent temporal variations of the observed flows, our method does not model the time in a linear fashion, but by several dimensions wrapped into themselves. This representation of time can capture long-term (i.e. days to weeks) periodic patterns of peoples' routines and habits. Knowledge of these patterns allows making long-term predictions of future human presence and walking directions, which can support mobile robot navigation in human-populated environments. Using datasets gathered by a robot for several weeks, we compare the model to state-of-the-art methods for pedestrian flow modelling.
Understanding how people are likely to behave in an environment is a key requirement for efficient and safe robot navigation. However, mobile platforms are subject to spatial and temporal constraints, meaning that only partial observations of human activities are typically available to a robot, while the activity patterns of people in a given environment may also change at different times. To address these issues we present as the main contribution an exploration strategy for acquiring models of pedestrian flows, which decides not only the locations to explore but also the times when to explore them. The approach is driven by the uncertainty from multiple Poisson processes built from past observations. The approach is evaluated using two long-term pedestrian datasets, comparing its performance against uninformed exploration strategies. The results show that when using the uncertainty in the exploration policy, model accuracy increases, enabling faster learning of human motion patterns.
Robots operating with humans in highly dynamic environments need not only react to moving persons and objects but also to anticipate and adhere to patterns of motion of dynamic agents in their environment. Currently, robotic systems use information about dynamics locally, through tracking and predicting motion within their direct perceptual range. This limits robots to reactive response to observed motion and to short-term predictions in their immediate vicinity. In this paper, we explore how maps of dynamics (MoDs) that provide information about motion patterns outside of the direct perceptual range of the robot can be used in motion planning to improve the behaviour of a robot in a dynamic environment. We formulate cost functions for four MoD representations to be used in any optimizing motion planning framework. Further, to evaluate the performance gain through using MoDs in motion planning, we design objective metrics, and we introduce a simulation framework for rapid benchmarking. We find that planners that utilize MoDs waste less time waiting for pedestrians, compared to planners that use geometric information alone. In particular, planners utilizing both intensity (proportion of observations at a grid cell where a dynamic entity was detected) and direction information have better task execution efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.