Iron (Fe) is an essential micronutrient for virtually all organisms and serves as a cofactor for a wide variety of vital cellular processes. Although Fe deficiency is the primary nutritional disorder in the world, cellular responses to Fe deprivation are poorly understood. We have discovered a posttranscriptional regulatory process controlled by Fe deficiency, which coordinately drives widespread metabolic reprogramming. We demonstrate that, in response to Fe deficiency, the Saccharomyces cerevisiae Cth2 protein specifically downregulates mRNAs encoding proteins that participate in many Fe-dependent processes. mRNA turnover requires the binding of Cth2, an RNA binding protein conserved in plants and mammals, to specific AU-rich elements in the 3' untranslated region of mRNAs targeted for degradation. These studies elucidate coordinated global metabolic reprogramming in response to Fe deficiency and identify a mechanism for achieving this by targeting specific mRNA molecules for degradation, thereby facilitating the utilization of limited cellular Fe levels.
The redox active metal copper is an essential cofactor in critical biological processes such as respiration, iron transport, oxidative stress protection, hormone production, and pigmentation. A widely conserved family of high affinity copper transport proteins (Ctr proteins) mediates copper uptake at the plasma membrane. However, little is known about Ctr protein topology, structure, and the mechanisms by which this class of transporters mediates high affinity copper uptake. In this report, we elucidate the topological orientation of the yeast Ctr1 copper transport protein. We show that a series of clustered methionine residues in the hydrophilic extracellular domain and an MXXXM motif in the second transmembrane domain are important for copper uptake but not for protein sorting and delivery to the cell surface. The conversion of these methionine residues to cysteine, by site-directed mutagenesis, strongly suggests that they coordinate to copper during the process of metal transport. Genetic evidence supports an essential role for cooperativity between monomers for the formation of an active Ctr transport complex. Together, these results support a fundamentally conserved mechanism for high affinity copper uptake through the Ctr proteins in yeast and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.