Background: The aim of the study was to systematically evaluate the biceps femoris long head activation across cross-sectional hamstring strength exercise studies. Methods: A systematic review design was followed. The search strategy conducted in PubMed, Cochrane Library, and Web of Sciences databases found a total of 3643 studies. Once inclusion and exclusion criteria were applied, 29 studies were finally included in this systematic review. A total of 507 participants and 114 different exercises were analyzed. Exercises were evaluated individually and grouped into several categories: Nordics, isokinetic exercises, lunges, squats, deadlifts, good mornings, hip thrusts, bridges, leg curls, swings, hip and back extensions, and others. Results: Results showed the isokinetic and Nordic exercises as the categories with highest biceps femoris activation (>60% of Maximal Voluntary Isometric Contraction). Nordic hamstring exercise ankle dorsiflexion was the exercise that achieved the highest biceps femoris long head activation (128.1% of its Maximal Voluntary Isometric Contraction). Conclusions: The results from this systematic review suggest that isokinetic and Nordic exercises seem to be the best option to activate biceps femoris long head. Future studies evaluating the implementation of these exercises in prevention programs are needed.
Background: The effect of load distribution applied to the trunk musculature with lunge exercises has yet to be determined. The aim of this study was to evaluate the effect of load placement using dumbbells on the activation of the latissimus dorsi, erector spinae, external oblique, and rectus abdominis muscles during the lunge. Methods: Forty-two amateur athletes (21 men and 21 women) were recruited. Three lunge exercises were performed with different loading arrangements (ipsilateral, contralateral, and bilateral). The principal variable recorded for muscle activity was mean “root mean square” expressed as the percentage of the maximal voluntary isometric contraction. Results: There are statistically significant differences in the erector spinae (p < 0.001; p < 0.003) and external oblique muscles (p < 0.009; p < 0.001) compared with the contralateral side. The muscle on the opposite side of the load achieved higher activation for these muscles. The erector spinae and latissimus dorsi muscle did not reach a statistically significant difference with the contralateral side in any exercise (p > 0.05). The higher activation of the latissimus dorsi occurred on the same side on which the load was placed. Conclusions: There was higher activation of the erector spinae, external oblique, and rectus abdominis muscles contralateral to the side of load placement during lunge exercise by amateur athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.